183 research outputs found
Chronic Ethanol Intake Promotes Double Gluthatione S-transferase/transforming Growth Factor-α-positive Hepatocellular Lesions In Male Wistar Rats
The chronic ethanol intake influence on the gluthatione S-transferase (GST-P) and transforming growth factor α (TGF-α) expression in remodeling/persistent preneoplastic lesions (PNLs) was evaluated in the resistant hepatocyte model. Male Wistar rats were allocated into five groups: G1, non-treated, fed water and chow ad libitum; G2, non-treated and pair-fed chow (restricted to match that of G3 group) and a maltodextrin (MD) solution in tap water (matched ethanol-derived calories); G3, fed 5% ethanol in drinking water and chow ad libitum; G4, diethylnitrosamine (DEN, 200 mg/kg, body weight) plus 200 parts per million of 2-acetylaminofluorene (2-AAF) for 3 weeks and pair-fed chow (restricted to match that of G5 group) and an MD solution in tap water (matched ethanol-derived calories); G5, DEN/2-AAF treatment, fed ethanol 5% and chow ad libitum. All animals were subjected to 70% partial hepatectomy at week 3 and sacrificed at weeks 12 or 22, respectively. Liver samples were collected for histological analysis or immunohistochemical expression of GST-P, TGF-α and proliferating cell nuclear antigen or zymography for matrix metalloproteinases-2 and-9. At the end of ethanol treatment, there was a significant increase in the percentage of liver area occupied by persistent GST-P-positive PNLs, the number of TGF-α-positive PNLs and the development of liver tumors in ethanol-fed and DEN/2-AAF-treated groups (G5 versus G4, P < 0.001). In addition, ethanol feeding led to a significant increase in cell proliferation mainly in remodeling and persistent PNLs with immunoreactivity for TGF-α at week 22 (P < 0.001). Gelatinase activities were not altered by ethanol treatment. The results demonstrated that ethanol enhances the selective growth of PNL with double expression of TGF-α and GST-P markers. © 2008 Japanese Cancer Association.992221228Pöschl, G., Seitz, H.K., Alcohol and cancer (2004) Alcohol Alcohol, 39, pp. 155-165Bofetta, P., Hashibe, M., Alcohol and cancer (2006) Lancet Oncol, 7, pp. 149-156Brown, L.M., Epidemiology of alcohol-associated cancers (2005) Alcohol, 35, pp. 161-168Voight, M.D., Alcohol in hepatocellular cancer (2005) Clin Liver Dis, 9, pp. 151-169Vidal, F., Toda, R., GutiĂ©rrez, C., Influence of chronic alcohol abuse and liver disease on hepatic aldehyde dehydrogenase activity (1998) Alcohol, 15, pp. 3-8Lieber, C.S., Abittan, C.S., Pharmacology and metabolism of alcohol, including its metabolics effects and interactions with other drugs (1999) Clin Dermatol, 17, pp. 365-379Bunout, D., Nutritional and metabolic effects of alcoholism: Their relationship with alcoholic liver disease (1999) Nutrition, 15, pp. 583-589NiemellĂ€, O., Distribution of ethanol-induced protein adducts in vivo: Relationship to tissue injury (2001) Free Rad Biol Med, 31, pp. 1533-1538Brooks, T.J., Theruvathu, J.A., DNA adducts from acetaldehyde: Implications for alcohol-related carcinogenesis (2005) Alcohol, 35, pp. 187-193Verna, L., Whysner, J., Williams, G.M., N-Nitrosodiethylamine mechanistic data and risk assessment: Bioactivation, DNA-Adduct formation, mutagenicity and tumor initiation (1996) Pharmacol Ther, 71, pp. 57-81Friedman, S.L., Mechanisms of disease: Mechanisms of hepatic fibrosis and therapeutic implication (2004) Nat Clin Pract Gastroenterol Hepatol, 1, pp. 98-105Purohit, V., Brenner, D.A., Mechanisms of alcohol-induced hepatic fibrosis: A summary of the Ron Thurman symposium (2006) Hepatology, 43, pp. 872-878Arthur, M.J.P., Fibrogenesis: Metalloproteinases and their inhibitors in liver fibrosis (2000) Am J Physiol Gastrointest Liver Phisiol, 279, pp. 245-249Tatsuta, M., Iishi, H., Baba, M., Enhancement by ethyl alcohol experimental hepatocarcinogenesis induced by N-nitrosomorpholine (1997) Int J Cancer, 71, pp. 1045-1048Karim, M.R., Wanibuchi, H., Wei, M., Morimura, K., Salim, E., Fukushima, S., Enhancing risk of ethanol on MeIQx-induced rat hepatocarcinogenesis is accompanied with increased levels of cellular proliferation and oxidative stress (2003) Cancer Lett, 192, pp. 37-47Kushida, M., Wanibuchi, H., Morimura, K., Dose-dependence of promotion of 2-amino-dimethylimidazo[4,5-f]quinoxaline-induced rat hepatocarcinogenesis by ethanol: Evidence for a threshold (2005) Cancer Sci, 96, pp. 747-757Stickel, F., Schuppan, D., Hahn, E.G., Seitz, H.K., Cocarcinogenic effects of alcohol in hepatocarcinogenesis (2002) Gut, 51, pp. 132-139Croager, E.J., Smith, P.G.J., Yeoh, G.C.T., Ethanol interactions with a choline-deficient, ethionine-supplemented feeding regime potentiate pre-neoplastic cellular alterations in rat liver (2002) Carcinogenesis, 23, pp. 1685-1693Wanibuchi, H., Wei, M., Karim, R., Existence of no hepatocarcinogenic effect levels of 2-amino-dimethylimidazo[4,5-f]quinoxaline with or without coadministration with ethanol (2006) Toxicol Pathol, 34, pp. 232-236Yanagi, S., Yamashita, M., Hiasa, Y., Kamiya, T., Effect of ethanol on hepatocarcinogenesis initiated in rats with 3âČ-methyl-4-dimethylaminoazobenzene in the absence of liver injuries (1989) Int J Cancer, 44, pp. 681-684Cho, K.J., Jang, J.J., Effects of carbon tetrachloride, ethanol, and acetaldehyde on diethylnitrosamine-induced hepatocarcinogenesis in rats (1993) Cancer Lett, 70, pp. 33-39Holmberg, B., Ekstrom, T., The effects of long-term oral administration of ethanol on Sprague-Dawley rats - A condensed report (1995) Toxicology, 96, pp. 133-145Solt, D., Farber, E., New principles for the analysis of chemical carcinogenesis (1976) Nature, 263, pp. 701-703Semple-Roberts, E., Hayes, M.A., Armstrong, D., Becker, R.A., Racz, W.J., Farber, E., Alternative methods of selecting hepatocellular nodules resistant to 2-acetylaminefluorene (1987) Int J Cancer, 40, pp. 643-645Tatematsu, M., Nagamine, Y., Farber, E., Redifferentiation as a basis for remodeling of carcinogen-induced hepatocyte nodules to normal appearing liver (1983) Cancer Res, 43, pp. 5049-5058Wood, G.A., Sarma, D.S.R., Archer, M.C., Resistance to the promotion of glutathione S-transferase 7-7-positive liver lesions in Copenhagen rats (1999) Carcinogenesis, 20, pp. 1169-1175Bannasch, P., Zerban, H., Predictive value of hepatic preneoplastic lesions as indicators of carcinogenic response (1992) Mechanism of Carcinogenesis in Risk Identification, pp. 389-427. , In: Vainio H, Magee PN, McGregor DB, McMichal AJ, eds. Lyon: IARC. Sci Publications, no. 116Pinheiro, F., Faria, R.R., de Camargo, J.L., Spinardi-Barbisan, A.L., da Eira, E.F., Barbisan, L.F., Chemoprevention of preneoplastic liver foci development by dietary mushroom Agaricus blazei Murrill in the rat (2003) Food Chem Toxicol, 41, pp. 1543-1550Schulte-Hermann, R., Kraupp-Grasl, B., Bursch, W., Gerbracht, U., Timmermann-Trosiener, I., Effects of non-genotoxic hepatocarcinogens phenobarbital and nafenopin on phenotype and growth of different populations of altered foci in rat liver (1989) Toxicol Pathol, 17, pp. 642-649Levin, S., Bucci, T.J., Cohen, S.M., The nomenclature of cell death: Recommendations of an ad hoc Committee of the Society of Toxicologic Pathologists (1999) Toxicol Pathol, 27, pp. 484-490Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254Bitsch, A., Hadjiolov, N., Klöhn, P.-C., Bergmann, O., Zwwirner-Baier, I., Neumann, H.-G., Dose-response of early effects related to tumor promotion of 2-acetylaminofluorene (2000) Toxicol Sci, 55, pp. 44-51Imai, T., Masui, T., Ichinose, M., Reduction of glutathione S-transferase P-form mRNA expression in remodeling nodules in rat liver revealed by in situ hybridization (1997) Carcinogenesis, 18, pp. 545-551De Miglio, M.R., Simile, M.M., Muroni, M.R., Phenotypic reversion of rat neoplastic liver nodules is under genetic control (2003) Int J Cancer, 105, pp. 70-75Kaufmann, W.K., Zhang, Y., Kaufmann, D.G., Association between expression of transforming growth factor-alpha and progression of hepatocellular foci to neoplasms (1992) Carcinogenesis, 13, pp. 1481-1483Tamano, S., Merlino, G.T., Ward, J.M., Rapid development of hepatic tumors in transforming growth factor alpha transgenic mice associated with increased cell proliferation in precancerous hepatocellular lesions initiated by N-nitrosodiethylamine and promoted by phenobarbital (1994) Carcinogenesis, 15, pp. 1791-1798Burr, A.W., Toole, K., Mathew, J., Hines, J.E., Chapman, C., Burt, A.D., Transforming growth factor-α expression is altered during experimental hepatocarcinogenesis (1996) J Pathol, 179, pp. 276-282Kitano, M., Wada, J., Ariki, Y., Possible tumour development from double positive foci for TGF-alpha and GST-P observed in early stages on rat hepatocarcinogenesis (2006) Cancer Sci, 97, pp. 478-483Sandgren, E.P., Luetteke, N.C., Qiu, T.H., Palmiter, R.D., Brinster, R.L., Lee, D.C., Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver (1993) Mol Cell Biol, 13, pp. 320-330Thorgeirsson, S.S., Santoni-Rugiu, E., Transgenic mouse models in carcinogenesis: Interaction of c-myc with transforming growth factor alpha and hepatocyte growth factor in hepatocarcinogenesis (1996) Br J Clin Pharmacol, 42, pp. 43-52Kato, J., Sato, Y., Inui, N., Ethanol induces transforming-growth factor-α expression in hepatocytes, leading to a stimulation of collagen synthesis by hepatic stellate cells (2003) Alcohol Clin Exp Res, 27, pp. 58S-63SZerban, H., Radig, S., Kopp-Schneider, A., Bannasch, P., Cell proliferation and cell death (apoptosis) in hepatic preneoplasia and neoplasia are closely related to phenotypic cellular diversity and instability (1994) Carcinogenesis, 15, pp. 2467-2473Grasl-Kraupp, B., Ruttkay-Nedecky, B., MĂŒllauer, H., Taper, H., Huber, W., Bursch, W., Schulte-Hermann R Inherent increase of apoptosis in liver tumors: Implications for carcinogenesis and tumor regression (1997) Hepatology, 25, pp. 906-912Tanaka, T., Hirota, Y., Kuriyama, M., Nishiguchi, S., Otani, S., Time course of change in glutathione s-transferase positive foci and ornithine decarboxylase activity after cessation of long-term alcohol administration in rats (2001) Asian Pac J Cancer Prev, 2, pp. 131-134Mazzantini, R.P., de Conti, A., Moreno, F.S., Persistent and remodeling hepatic preneoplastic lesions present differences in cell proliferation and apoptosis, as well as in p53, Bcl-2 and NF-kappaB pathways (2007) J Cell BiochemFoda, H.D., Zucker, S., Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis (2001) Drug Discov Today, 6, pp. 478-482Aye, M.M., Cuiling, M.A., Lin, H., Bower, K.A., Wiggins, R.C., Luo, J., Ethanol-induced in vitro invasion of breast cancer cells. the contribution of MMP-2 by fibroblasts (2004) Int J Cancer, 112, pp. 738-746Ke, Z., Lin, H., Fan, Z., MMP-2 mediates ethanol-induced invasion of mammary epithelial cells over-expressing ErbB2 (2006) Int J Cancer, 119, pp. 8-1
Explaining the Higgs Decays at the LHC with an Extended Electroweak Model
We show that the recent discovery of a new boson at the LHC, which we assume
to be a Higgs boson, and the observed enhancement in its diphoton decays
compared to the SM prediction, can be explained by a new doublet of charged
vector bosons from an extended electroweak gauge sector model with
SU(3)_C\otimesSU(3)_L\otimesU(1)_X symmetry. Our results show a good
agreement between our theoretical expected sensitivity to a 126--125 GeV Higgs
boson and the experimental significance observed in the diphoton channel at the
8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also
taken into account, in order to anticipate a possible confirmation of deficits
in the branching ratios into , , bottom quarks, and tau leptons.Comment: 16 pages, 5 figure
Causes of morphological discontinuities in soils of DepressĂŁo Central, Rio Grande do Sul State, Brazil
Morphological, particularly textural, discontinuities between horizons increase soil erodibility in DepressĂŁo Central, Rio Grande do Sul State (Brazil). Characterization of such discontinuities would help to understand landscape evolution and to model near-surface hydrology. The objective of this research was to explore the relationship between morphological discontinuity and deposition of transported materials during pedogenesis. Transported material was meant to be mineral particles found in the soil profile, transported probably by water or gravity, that were not present neither in the parent material nor derived from it. Five soils of this region (two Alfisols, two Ultisols and one Mollisol) were sampled and morphological, sand grain size statistics, chemical and mineralogical analyses were used to search for evidences of deposition of transported materials. Two soils had abrupt textural change but no evidence of deposition of transported materials, two soils had less contrasting morphology and some characteristics that are possibly related to deposition, and one soil had no morphological discontinuity, but had deposition of material enriched in magnetite-maghemite in the sand fraction of the A horizon. Therefore, there were no relationship between morphological discontinuity and deposition of transported materials for these profiles in the DepressĂŁo Central.Contrastes morfolĂłgicos entre horizontes, e particularmente os contrastes texturais, aumentam a erodibilidade do solo na DepressĂŁo Central do Rio Grande do Sul (Brasil). A caracterização destes contrastes contribui para a compreensĂŁo da evolução da paisagem e para a modelagem da hidrologia de superfĂcie. Cinco solos desta regiĂŁo foram amostrados e a morfologia, distribuição do tamanho de grĂŁos da fração areia, anĂĄlises quĂmicas e mineralĂłgicas foram usadas para tentativamente relacionar o contraste textural e morfolĂłgico com materiais transportados durante a pedogĂȘnese. Por materiais transportados entendem-se as partĂculas minerais presentes no perfil do solo, transportadas provavelmente por ĂĄgua ou gravidade, e que nĂŁo estavam presentes nem no material de origem e nem foram derivadas deste. Dois solos apresentaram mudança textural abrupta sem evidĂȘncias de deposição, dois solos apresentaram menor contraste morfolĂłgico e evidĂȘncias que sustentam a possibilidade de deposição e um solo nĂŁo apresentou contraste morfolĂłgico, porĂ©m as caracterĂsticas indicam deposição de material rico em magnetita-maghemita na fração areia do horizonte A. Portanto, nĂŁo foi encontrada relação entre descontinuidades morfolĂłgicas e deposição de materiais transportados, na DepressĂŁo Central
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Measurement of the cross section of high transverse momentum ZâbbÌ production in protonâproton collisions at âs = 8 TeV with the ATLAS detector
This Letter reports the observation of a high transverse momentum ZâbbÌ signal in protonâproton collisions at âs=8 TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fbâÂč. The ZâbbÌ decay is reconstructed from a pair of b -tagged jets, clustered with the anti-ktkt jet algorithm with R=0.4R=0.4, that have low angular separation and form a dijet with pT>200 GeVpT>200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be
ÏZâbbÂŻfid=2.02±0.20 (stat.) ±0.25 (syst.)±0.06 (lumi.) pb=2.02±0.33 pb,
in good agreement with next-to-leading-order theoretical predictions
Measurement of the branching ratio Î(Îbâ° â Ï(2S)Î0)/Î(Îbâ° â J/ÏÎ0) with the ATLAS detector
An observation of the decay and
a comparison of its branching fraction with that of the decay has been made with the ATLAS detector in
proton--proton collisions at TeV at the LHC using an integrated
luminosity of fb. The and mesons are
reconstructed in their decays to a muon pair, while the decay is exploited for the baryon reconstruction. The
baryons are reconstructed with transverse momentum GeV and pseudorapidity . The measured branching ratio of
the and decays is , lower than the expectation from the
covariant quark model.Comment: 12 pages plus author list (28 pages total), 5 figures, 1 table,
published on Physics Letters B 751 (2015) 63-80. All figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2013-08
- âŠ