2,692 research outputs found

    Endoscopic Findings of 100 Early-Stage Esophageal Cancers

    Get PDF
    The morphologic analysis of 100 early squamous cell carcinomas of the esophagus has shown that the barely visible or invisible forms (erythroplakias and occult forms) are predominant. This explains the poor yield of upper gastrointestinal (GI) endoscopies in detecting early cancers, at least in Western countries. Leucoerythroplakias correspond to the most advanced form of early cancers (submucosal invasion in approximately 38% of cases). Pure erythroplakias and occult forms correspond to in situ or intramucosal cancers in over 90% of the cases

    Wavelength-dependent effect of tetra(m-hydroxyphenyl)chlorin for photodynamic therapy in an ‘early' squamous cell carcinoma model

    Get PDF
    The purpose of the present study was to correlate the wavelength of the irradiation source with the phototoxic activity of tetra(m-hydroxyphenyl)chlorin (mTHPC) in healthy and neoplastic mucosae. The hamster tumour model for early squamous cell carcinoma was used in these experiments. In vitro and in vivo studies have shown that mTHPC absorbs significantly at 652 nm (1, 2). This wavelength is used currently in clinical mTHPC photodynamic therapy (PDT) trials. In order to study the wavelength dependence of the phototoxic effect on normal and tumour tissues, irradiation tests were performed 4 days after injection of 0.5mg kg-1 mTHPC. An argon-ion pumped dye laser was used as the light source. The light dose of 12 J cm-2 was delivered at a light dose rate of 150 mW cm-2. The wavelength was varied between 642.5 and 665 nm at 2.5-nm increments. The PDT damage was evaluated in serial Haematoxylin and Eosin stained sections using a tissue-damage scale. Light between 647.5 and 652.5 nm induced the highest damage to both the healthy and tumour mucosae. At wavelengths equal to or below 645 nm, and equal to or above 655 nm, tissue damage decreased. Wavelengths below 642 nm and above 660 nm did not induce any visible tissue damage. These results suggest that the in vivo optimal wavelength range for PDT with mTHPC is between 647 and 652 nm. This information is essential for selecting an appropriate light sourc

    Wavelength-dependent effect of tetra(m-hydroxyphenyl) chlorin for photodynamic therapy in an "early" squamous cell carcinoma model

    Get PDF
    The purpose of the present study was to correlate the wavelength of the irradiation source with the phototoxic activity of tetra(m-hydroxyphenyl)chlorin (mTHPC) in healthy and neoplastic mucosae. The hamster tumour model for early squamous cell carcinoma was used in these experiments. In vitro and in vivo studies have shown that mTHPC absorbs significantly at 652 nm (1, 2). This wavelength is used currently in clinical mTHPC photodynamic therapy (PDT) trials. In order to study the wavelength dependence of the phototoxic effect on normal and tumour tissues, irradiation tests were performed 4 days after injection of 0.5mg kg-1 mTHPC. An argon-ion pumped dye laser was used as the light source. The light dose of 12 J cm-2 was delivered at a light dose rate of 150 mW cm-2. The wavelength was varied between 642.5 and 665 nm at 2.5-nm increments. The PDT damage was evaluated in serial Haematoxylin and Eosin stained sections using a tissue-damage scale. Light between 647.5 and 652.5 nm induced the highest damage to both the healthy and tumour mucosae. At wavelengths equal to or below 645 nm, and equal to or above 655 nm, tissue damage decreased. Wavelengths below 642 nm and above 660 nm did not induce any visible tissue damage. These results suggest that the in vivo optimal wavelength range for PDT with mTHPC is between 647 and 652 nm. This information is essential for selecting an appropriate light source

    In situ commissioning of the ATLAS electromagnetic calorimeter with cosmic muons

    Get PDF
    In 2006, ATLAS entered the {\it in situ} commissioning phase. The primary goal of this phase is to verify the detector operation and performance with cosmic muons. Using a dedicated cosmic muon trigger from the hadronic Tile calorimeter, a sample of approximately 120000120\,000 events was collected in several modules of the barrel electromagnetic (EM) calorimeter between August 2006 and March 2007. As cosmic events are generally non-projective and arrive asynchronously with respect to the trigger clock, methods to improve the standard signal reconstruction for this situation are presented. Various selection criteria for projective muons and clustering algorithms have been tested, leading to preliminary results on calorimeter uniformity in η\eta and timing performance

    Imaging the spinning gas and dust in the disc around the supergiant A[e] star HD62623

    Get PDF
    Context. To progress in the understanding of evolution of massive stars one needs to constrain the mass-loss and determine the phenomenon responsible for the ejection of matter an its reorganization in the circumstellar environment Aims. In order to test various mass-ejection processes, we probed the geometry and kinematics of the dust and gas surrounding the A[e] supergiant HD 62623. Methods. We used the combined high spectral and spatial resolution covered by the VLTI/AMBER instrument. Thanks to a new multiwavelength optical/IR interferometry imaging technique, we reconstructed the first velocity-resolved images with a milliarcsecond resolution in the infrared domain. Results. We managed to disentangle the dust and gas emission in the HD 62623 circumstellar disc.We measured the dusty disc inner inner rim, i.e. 6 mas, constrained the inclination angle and the position angle of the major-axis of the disc.We also measured the inner gaseous disc extension (2 mas) and probed its velocity field thanks to AMBER high spectral resolution. We find that the expansion velocity is negligible, and that Keplerian rotation is a favoured velocity field. Such a velocity field is unexpected if fast rotation of the central star alone is the main mechanism of matter ejection. Conclusions. As the star itself seems to rotate below its breakup-up velocity, rotation cannot explain the formation of the dense equatorial disc. Moreover, as the expansion velocity is negligible, radiatively driven wind is also not a suitable explanation to explain the disc formation. Consequently, the most probable hypothesis is that the accumulation of matter in the equatorial plane is due to the presence of the spectroscopic low mass companion.Comment: To be published soon in A\&

    Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method

    Get PDF
    This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known e/he/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within ±1\pm 1% of the true values and the fractional energy resolution is [(58±3)/E+(2.5±0.3)[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E. The value of the e/he/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74±0.041.74\pm0.04 and agrees with the prediction that e/h>1.7e/h > 1.7 for this electromagnetic calorimeter. Results of a study of the longitudinal hadronic shower development are also presented. The data have been taken in the H8 beam line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore