535 research outputs found

    Marine Delay and Disruption Tolerant Networks (MaDTN): Application for Artisanal Fisheries

    Get PDF
    The artisanal fishing activity carried out on the coasts where the production of fish can be exploited is affected by a lack of communication between the vessels in order to provide relevant information related to multiple marine sensor parameters. It is mainly due to the rugged geographic area that causes highly disruptive communication links and in which traditional IP-based communications with transport protocols such as TCP or UDP do not work properly. This paper presents and evaluates a new communications architecture to provide services to marine sensor networks using a disruption tolerant networking (DTN) based solution. We propose a new architecture that takes into account the different vessels densities. We assume a finite sensor population model and a saturated traffic condition where every sensor always has frames to transmit. The performance was evaluated in terms of delivery probabilities, delay and a DTN scenario indicator (DSI) proposed. Through simulations, this paper reveals that Low Density scenery yield greater latency, and more density of nodes has better results. We achieved a successful delivery rate of 74% and a latency of 2 h approximately. Finally indicators shows that high density of nodes is strongly recommended for fishery scenery models

    A Model for Ferromagnetic Nanograins with Discrete Electronic States

    Full text link
    We propose a simple phenomenological model for an ultrasmall ferromagnetic grain, formulated in terms of the grain's discrete energy levels. We compare the model's predictions with recent measurements of the discrete tunneling spectrum through such a grain. The model can qualitatively account for the observed features if we assume (i) that the anisotropy energy varies among different eigenstates of one grain, and (ii) that nonequilibrium spin accumulation occurs.Comment: 4 pages, 2 figure

    Application of Anodic Stripping Voltammetry to assess sorption performance of an industrial waste entrapped in alginate beads to remove As(V)

    Get PDF
    AbstractA solid waste material containing Fe(III) and other metal (hydr)oxides produced in a metal surface treatment industry has been investigated for As(V) removal. In order to facilitate sorbent application, 2% of raw material has been entrapped in calcium alginate gel matrix (2% O-CA).An accurate characterization of the sorption on gel beads was undertaken, considering thermodynamic and kinetic aspects. All experiments were carried out at pH 8, since the maximum As(V) sorption was reached between pH 6 and 9. About isotherms, the best fit was obtained considering the Langmuir model and a capacity of 1.9mg/g was achieved. The kinetic profiles evidenced that a quantitative sorption was obtained within 10h. The 2% O-CA beads were also tested for continuous As(V) removal in a fixed bed column. Experiments were performed at constant flow rate, and varying the inlet As(V) concentration. With a view to design an automatic system for As(V) analysis in the outlet flow, the suitability of applying Anodic Stripping Voltammetry was evaluated: the method resulted appropriated to follow the As(V) content in the outlet solutions of columns with metal inlet concentration <1 mg/L.These results suggested that 2% O-CA beads could be a promising sorbent candidate for As(V) removal

    Anomalous scaling and Lee-Yang zeroes in Self-Organized Criticality

    Full text link
    We show that the generating functions of avalanche observables in SOC models exhibits a Lee-Yang phenomenon. This establishes a new link between the classical theory of critical phenomena and SOC. A scaling theory of the Lee-Yang zeroes is proposed including finite sampling effects.Comment: 33 pages, 19 figures, submitte

    Measure representation and multifractal analysis of complete genomes

    Get PDF
    This paper introduces the notion of measure representation of DNA sequences. Spectral analysis and multifractal analysis are then performed on the measure representations of a large number of complete genomes. The main aim of this paper is to discuss the multifractal property of the measure representation and the classification of bacteria. From the measure representations and the values of the DqD_{q} spectra and related CqC_{q} curves, it is concluded that these complete genomes are not random sequences. In fact, spectral analyses performed indicate that these measure representations considered as time series, exhibit strong long-range correlation. For substrings with length K=8, the DqD_{q} spectra of all organisms studied are multifractal-like and sufficiently smooth for the CqC_{q} curves to be meaningful. The CqC_{q} curves of all bacteria resemble a classical phase transition at a critical point. But the 'analogous' phase transitions of chromosomes of non-bacteria organisms are different. Apart from Chromosome 1 of {\it C. elegans}, they exhibit the shape of double-peaked specific heat function.Comment: 12 pages with 9 figures and 1 tabl

    Emergence of quasi-metallic state in disordered 2D electron gas due to strong interactions

    Full text link
    The interrelation between disorder and interactions in two dimensional electron liquid is studied beyond weak coupling perturbation theory. Strong repulsion significantly reduces the electronic density of states on the Fermi level. This makes the electron liquid more rigid and strongly suppresses elastic scattering off impurities. As a result the weak localization, although ultimately present at zero temperature and infinite sample size, is unobservable at experimentally accessible temperature at high enough densities. Therefore practically there exists a well defined metallic state. We study diffusion of electrons in this state and find that the diffusion pole is significantly modified due to "mixture" with static photons similar to the Anderson - Higgs mechanism in superconductivity. As a result several effects stemming from the long range nature of diffusion like the Aronov - Altshuler logarithmic corrections to conductivity are less pronounced.Comment: to appear in Phys. Rev.

    Heterogenous mean-field analysis of a generalized voter-like model on networks

    Get PDF
    We propose a generalized framework for the study of voter models in complex networks at the the heterogeneous mean-field (HMF) level that (i) yields a unified picture for existing copy/invasion processes and (ii) allows for the introduction of further heterogeneity through degree-selectivity rules. In the context of the HMF approximation, our model is capable of providing straightforward estimates for central quantities such as the exit probability and the consensus/fixation time, based on the statistical properties of the complex network alone. The HMF approach has the advantage of being readily applicable also in those cases in which exact solutions are difficult to work out. Finally, the unified formalism allows one to understand previously proposed voter-like processes as simple limits of the generalized model
    corecore