23 research outputs found

    Reducing the within-patient variability of breathing for radiotherapy delivery in conscious, unsedated cancer patients using a mechanical ventilator

    Get PDF
    OBJECTIVE: Variability in the breathing pattern of patients with cancer during radiotherapy requires mitigation, including enlargement of the planned treatment field, treatment gating and breathing guidance interventions. Here, we provide the first demonstration of how easy it is to mechanically ventilate patients with breast cancer while fully conscious and without sedation, and we quantify the resulting reduction in the variability of breathing. METHODS: 15 patients were trained for mechanical ventilation. Breathing was measured and the left breast anteroposterior displacement was measured using an Osiris surface-image mapping system (Qados Ltd, Sandhurst, UK). RESULTS: Mechanical ventilation significantly reduced the within-breath variability of breathing frequency by 85% (p < 0.0001) and that of inflation volume by 29% (p < 0.006) when compared with their spontaneous breathing pattern. During mechanical ventilation, the mean amplitude of the left breast marker displacement was 5 ± 1 mm, the mean variability in its peak inflation position was 0.5 ± 0.1 mm and that in its trough inflation position was 0.4 ± 0.0 mm. Their mean drifts were not significantly different from 0 mm min(−1) (peak drift was −0.1 ± 0.2 mm min(−1) and trough drift was −0.3 ± 0.2 mm min(−1)). Patients had a normal resting mean systolic blood pressure (131 ± 5 mmHg) and mean heart rate [75 ± 2 beats per minute (bpm)] before mechanical ventilation. During mechanical ventilation, the mean blood pressure did not change significantly, mean heart rate fell by 2 bpm (p < 0.05) with pre-oxygenation and rose by only 4 bpm (p < 0.05) during pre-oxygenation with hypocapnia. No patients reported discomfort and all 15 patients were always willing to return to the laboratory on multiple occasions to continue the study. CONCLUSION: This simple technique for regularizing breathing may have important applications in radiotherapy. ADVANCES IN KNOWLEDGE: Variations in the breathing pattern introduce major problems in imaging and radiotherapy planning and delivery and are currently addressed to only a limited extent by asking patients to breathe to auditory or visual guidelines. We provide the first demonstration that a completely different technique, of using a mechanical ventilator to take over the patients' breathing for them, is easy for patients who are conscious and unsedated and reduces the within-patient variability of breathing. This technique has potential advantages in radiotherapy over currently used breathing guidance interventions because it does not require any active participation from or feedback to the patient and is therefore worthy of further clinical evaluation

    Safely prolonging single breath-holds to &gt;5 min in patients with cancer; feasibility and applications for radiotherapy

    Get PDF
    OBJECTIVE: Multiple, short and deep inspiratory breath-holds with air of approximately 20 s are now used in radiotherapy to reduce the influence of ventilatory motion and damage to healthy tissue. There may be further clinical advantages in delivering each treatment session in only one single, prolonged breath-hold. We have previously developed techniques enabling healthy subjects to breath-hold for 7 min. Here, we demonstrate their successful application in patients with cancer. METHODS: 15 patients aged 37–74 years undergoing radiotherapy for breast cancer were trained to breath-hold safely with pre-oxygenation and mechanically induced hypocapnia under simulated radiotherapy treatment conditions. RESULTS: The mean breath-hold duration was 5.3 ± 0.2 min. At breakpoint, all patients were normocapnic and normoxic [mean end-tidal partial pressure of carbon dioxide was 36 ± 1 standard error millimetre of mercury, (mmHg) and mean oxygen saturation was 100 ± 0 standard error %]. None were distressed, nor had gasping, dizziness or disturbed breathing in the post-breath-hold period. Mean blood pressure had risen significantly from 125 ± 3 to 166 ± 4 mmHg at breakpoint (without heart rate falling), but normalized within approximately 20 s of the breakpoint. During breath-holding, the mean linear anteroposterior displacement slope of the L breast marker was <2 mm min(−1). CONCLUSION: Patients with cancer can be trained to breath-hold safely and under simulated radiotherapy treatment conditions for longer than the typical beam-on time of a single fraction. We discuss the important applications of this technique for radiotherapy. ADVANCES IN KNOWLEDGE: We demonstrate for the first time a technique enabling patients with cancer to deliver safely a single prolonged breath-hold of >5 min (10 times longer than currently used in radiotherapy practice), under simulated radiotherapy treatment conditions

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007); L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E. Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported by a French National Research Agency ‘Investissements d’Avenir’ programme grant (ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research Training Program Scholarship. The Raipur Group is thankful to: (1) the University Grants Commission, New Delhi, India for the research grants received through its SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science; and (2) the Center for Translational Chronobiology at the School of Studies in Life Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was supported by grants from the Beijing Natural Science Foundation (5184035) and CAS Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported by the National Science Foundation Graduate Research Fellowship (R010138018). We acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E. Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova); S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R. C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T. Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera); J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B. Todorova (University of Vienna, Austria). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Reducing the within-patient variability of breathing for radiotherapy delivery in conscious, unsedated cancer patients using a mechanical ventilator

    No full text
    OBJECTIVES: Variability in the breathing pattern of cancer patients during radiotherapy requires mitigation, including enlargement of the planned treatment field, treatment gating and breathing guidance interventions. Here we provide the first demonstration of how easy it is to mechanically ventilate patients with breast cancer while fully conscious and without sedation and we quantify the resulting reduction in the variability of breathing.METHODS: 15 patients were trained for mechanical ventilation. Breathing was measured and left breast anterior-posterior displacement was measured using an Osiris surface-image mapping system.RESULTS: Mechanical ventilation significantly reduced the within-breath variability of breathing frequency by 85% (P&lt;0.0001) and that of inflation volume by 29% (P&lt;0.006) when compared to their spontaneous breathing pattern. During mechanical ventilation, the mean amplitude of left breast marker displacement was 5 ± 1mm, the mean variability in its peak inflation position was 0.5 ± 0.1 mm and that in its trough inflation position was 0.4 ± 0.0 mm. Their mean drifts were not significantly different from zero (peak drift was -0.1 ± 0.2 mm/min and trough drift was -0.3 ± 0.2 mm/min). Patients had normal resting mean systolic blood pressure (131 ± 5 mmHg) and mean heart rate (75 ± 2 b.p.m.) before mechanical ventilation. During mechanical ventilation mean blood pressure did not change significantly, mean heart rate fell by 2 b.p.m. (p&lt;0.05) with preoxygenation and rose by only 4 b.p.m. (p&lt;0.05) during preoxygenation with hypocapnia. No patients reported discomfort and all 15 were always willing to return to the laboratory on multiple occasions to continue the study.CONCLUSIONS: This simple technique for regularizing breathing may have important applications in radiotherapy. Advances in knowledge: Variations in breathing pattern introduce major problems in imaging and radiotherapy planning and delivery and are currently addressed to only a limited extent by asking patients to breathe to auditory or visual guidelines. We provide the first demonstration that a completely different technique, of using a mechanical ventilator to take over the patients breathing for them, is easy for conscious and unsedated patients and reduces the within-patient variability of breathing. This technique has potential advantages in radiotherapy over currently used breathing guidance interventions because it does not require any active participation from, or feedback to the patient and is therefore worthy of further clinical evaluation.</p

    Occupational Insecticide Exposure and Risk of Non-Hodgkin Lymphoma: A Pooled Case-Control Study from the InterLymph Consortium

    No full text
    Evidence for the human health effects of pesticides is needed to inform risk assessment. We studied the relationship between occupational insecticide use and risk of non-Hodgkin lymphoma (NHL) by pooling data from nine case-control studies participating in the InterLymph Consortium, including 7909 cases and 8644 controls from North America, the European Union, and Australia. Insecticide use was coded using self-report or expert assessment, for insecticide groups (e.g., organophosphates, pyrethroids) and active ingredients (e.g., malathion, permethrin). Associations with insecticides were estimated using logistic regression to produce odds ratios (ORs) and 95% confidence intervals (CI) for all NHL and NHL subtypes, with adjustment for study site, demographic factors, and use of other pesticides. Occupational insecticide use, overall, was not associated with risk of NHL. Use of organophosphate insecticides was associated with increased risk of all NHL and the subtype follicular lymphoma, and an association was found with diazinon, in particular (ever use: OR=2.05, 95% CI: 1.24-3.37). The carbamate insecticide, carbaryl, was associated with risk of all NHL, and the strongest associations were found with T-cell NHL for ever-use (OR=2.44, 95% CI: 1.13-5.28) and longer duration (>8 years vs. never: OR=2.90, 95% CI: 1.02-8.25). There was no association of NHL with other broad groups of insecticides, including organochlorine and pyrethroids, and some inverse associations were estimated in relation to historical DDT use. Our findings contribute to the totality of evidence available to help inform risk decisions by public health and regulatory agencies - of importance given continued, widespread use of organophosphate and carbamate insecticides. This article is protected by copyright. All rights reserved

    Herbicide use in farming and other jobs in relation to non-Hodgkin's lymphoma (NHL) risk

    Get PDF
    International audienceOBJECTIVES: Given mixed evidence for carcinogenicity of current-use herbicides, we studied the relationship between occupational herbicide use and risk of non-Hodgkin's lymphoma (NHL) in a large, pooled study. METHODS: We pooled data from 10 case-control studies participating in the International Lymphoma Epidemiology Consortium, including 9229 cases and 9626 controls from North America, the European Union and Australia. Herbicide use was coded from self-report or by expert assessment in the individual studies, for herbicide groups (eg, phenoxy herbicides) and active ingredients (eg, 2,4-dichlorophenoxyacetic acid (2,4-D), glyphosate). The association between each herbicide and NHL risk was estimated using logistic regression to produce ORs and 95% CIs, with adjustment for sociodemographic factors, farming and other pesticides. RESULTS: We found no substantial association of all NHL risk with ever-use of any herbicide (OR=1.10, 95% CI: 0.94 to 1.29), nor with herbicide groups or active ingredients. Elevations in risk were observed for NHL subtypes with longer duration of phenoxy herbicide use, such as for any phenoxy herbicide with multiple myeloma (>25.5 years, OR=1.78, 95% CI: 0.74 to 4.27), 2,4-D with diffuse large B-cell lymphoma (>25.5 years, OR=1.47, 95% CI: 0.67 to 3.21) and other (non-2,4-D) phenoxy herbicides with T-cell lymphoma (>6 years, lagged 10 years, OR=3.24, 95% CI: 1.03 to 10.2). An association between glyphosate and follicular lymphoma (lagged 10 years: OR=1.48, 95% CI: 0.98 to 2.25) was fairly consistent across analyses. CONCLUSIONS: Most of the herbicides examined were not associated with NHL risk. However, associations of phenoxy herbicides and glyphosate with particular NHL subtypes underscore the importance of estimating subtype-specific risks
    corecore