45 research outputs found

    Mikroskoopiast geenideni – kuidas tuvastada toksilisi sinivetikaid madalas eutroofses järves

    Get PDF
    A Thesis for applying for the degree of Doctor of Philosophy in Applied Biology.Väitekiri filosoofiadoktori kraadi taotlemiseks rakendusbioloogia erialal.Global warming paired with eutrophication processes is shifting phytoplankton communities towards the dominance of bloom-forming and potentially toxic cyanobacteria. Cyanobacterial blooms are considered an increasing threat in freshwater. Traditional monitoring predominantly relies on cyanobacterial biomass as an indicator of potential toxin presence, disregarding that toxin concentrations can rapidly increase even when cyanobacterial biomass is low. The concentration of toxins in the water is related to the abundance of toxin-producing species and the amount of toxin per cell – toxin quota. My research provides valuable information about the cyanobacterial community composition, the abundance of toxic genotypes, microcystin concentrations, microcystin quota and the environmental factors that promote toxic cyanobacterial blooms in the large and shallow freshwater lake Peipsi. This is the first study to utilise molecular methods as complementary to routine monitoring to determine cyanobacterial toxicity potential in lake Peipsi. In situ studies on zooplankton taxon-specific ingestion of potentially toxic cyanobacteria are still limited. My study focused on the importance of cyanobacteria as a food source for the dominant crustacean grazers. Among the first studies using qPCR targeting cyanobacterial genus-specific mcyE synthase genes in zooplankton gut content analysis, we show that potentially toxic strains of Microcystis can be ingested directly or indirectly by different zooplankton grazers. Information gathered from this study expanded our knowledge on the ecology of toxic cyanobacteria, provided an indication of how molecular methods can improve traditional risk assessment concerning the abundance of cyanobacteria and their cyanotoxins and broadened our knowledge of how target specific molecular tools could be further used in aquatic food-web studies. In the current thesis, I present a synthesis of spatial and temporal variability of potentially toxic cyanobacteria and the importance of cyanobacteria as a food source for crustacean zooplankton in large and shallow lake. The thesis is based on three published papers each dedicated to a different aspect of the whole. This thesis improves our knowledge of potentially toxic cyanobacteria and cyanotoxins in large and shallow eutrophic lakes and also provides the first insight into the in-situ consumption of toxic Microcystis by cladoceran and copepod grazers dominating in the lake. The knowledge gained from this study will guide us to further important questions that should be addressed in future research regarding the functioning of the food web of lake Peipsi. Phytoplankton community through high throughput sequencing would allow analysing the relation of cyanobacterial community composition along with concentration and diversity of cyanotoxins. This would include small-sized cyanobacteria in analysis, which are now excluded from the research. To elucidate the processes underlying cyanotoxin dynamics in more detail, further exploration focusing on the expression of toxin genes along with toxin concentration would be beneficial. Toxin gene expression could better indicate potential risks, especially in water bodies comprising mixed assemblages of toxic and non-toxic cyanobacteria.Sinivetikad ehk tsüanobakterid on üks edukaimaid elustikurühmi Maal. Ajalooliselt on nad täitnud ülitähtsat rolli rikastades Maa atmosfääri hapnikuga. Kahjuks on aga sinivetikate hulgas ka selliseid liike, kes oma elutegevuse käigus toodavad inimesele ja paljudele teistele organismidele ohtlikke mürke. Need bioaktiivsed ained on looduslikest ühenditest ühed toksilisemad. Sinivetikaõitsengud on kujunenud väga teravaks keskkonnaprobleemiks. Õitsengud mõjutavad oluliselt nii veekogu enda ökosüsteemi kui ka ökosüsteemiteenuseid ning on ohuks inimeste ja loomade tervisele. Soojem kliima ja veekogude toiteainetega rikastumine toob kaasa õitsengute intensiivistumise. Seega on järjest olulisem õitsengute varajane avastamine ja sellest tulenevate riskide hindamine. Traditsiooniliselt kasutatakse sinivetikate tuvastamiseks mikroskoopiat, aga väliste tunnuste alusel pole võimalik toksilisi ja mittetoksilisi sinivetikaid teineteisest eristada. Selliselt saadud hinnangud õitsengute toksilisusele on kaudsed, pole ennetavad ja ei täida oma eesmärki. Mürgiste ainete kogus vees on otseselt seotud toksiini tootvate sinivetikate arvukuse ja toksiini kogusega raku kohta. Siiski pelgalt sinvetikate hulgale tuginedes võime toksiinidest tulenevat riski ebatäpselt hinnata. Doktoritöös uurisin, millised seosed on tsüanobakterite liigilise koosseisu, mürgiste sinivetikate arvukuse ja toksiini kontsentratsiooni vahel nii vees kui ka rakkudes. Selgitasin välja mürgiste sinivetikate rolli erinevate zooplankterite toiduobjektina Peipsi järves. Tulemuste põhjal hindasin, millised keskkonnategurid mõjutavad toksiliste sinivetikate vohamist suures ja madalas järves. Sinivetikate toksilisuse hindamiseks kasutasin molekulaarseid meetodeid, mis on väga tundlikud ja võimaldavad hinnata riski toksilise õitsengu tekkeks juba enne õitsengu algust. Uurimistöö tulemused näitasid, et õitsengut põhjustavate sinivetikate kooslus on Peipsi järve osades erinev ning kõige enam soosib selle kujunemist nitraatide kättesaadavus ja vee temperatuur. Leidsin, et sinivetikate poolt toodetud maksamürgid – mikrotsüstiinid, on järves väga levinud ja peamiselt toodavad neid mürke sinivetikad perekonnast Microcystis. Koloonialised sinivetikad, peamiselt perekonnast Microcystis, moodustavad üllatavalt suure osa Peipsi järves domineerivate filtreerivate vesikirbuliste toidust ja seetõttu võivad just vesikirbulised olla olulised toksiinide edasikandmisel toiduahela kõrgematele tasemetele. Töö on üks esimestest maailmas, mis annab ülevaate mikrotsüstiine tootvate sinivetikate tarbimisest veekogu toiduahelas ja nende rollist vesikirbuliste toiduobjektidena. Samuti annab töö hädavajalikke eelteadmisi sinivetikamürkide võimaliku edasikandumise kohta mööda toiduahela lülisid kõrgematele troofilistele tasemetele. Käesolev uuring näitas, et töös kasutatud molekulaarsed meetodid on tänuväärne täiendus praegu kasutatavatele seiremeetoditele võimaldades hinnata mürke tootvate sinivetikate arvukust. Edasised toksiinigeenide ekspressiooniuuringud tõstavad veelgi meetodi tundlikkust ja spetsiifilisust.Publication of this thesis is supported by the Estonian University of Life Sciences

    Using Microcystin Gene Copies to Determine Potentially-Toxic Blooms, Example from a Shallow Eutrophic Lake Peipsi

    Get PDF
    Global warming, paired with eutrophication processes, is shifting phytoplankton communities towards the dominance of bloom-forming and potentially toxic cyanobacteria. The ecosystems of shallow lakes are especially vulnerable to these changes. Traditional monitoring via microscopy is not able to quantify the dynamics of toxin-producing cyanobacteria on a proper spatio-temporal scale. Molecular tools are highly sensitive and can be useful as an early warning tool for lake managers. We quantified the potential microcystin (MC) producers in Lake Peipsi using microscopy and quantitative polymerase chain reaction (qPCR) and analysed the relationship between the abundance of the mcyE genes, MC concentration, MC variants and toxin quota per mcyE gene. We also linked environmental factors to the cyanobacteria community composition. In Lake Peipsi, we found rather moderate MC concentrations, but microcystins and microcystin-producing cyanobacteria were widespread across the lake. Nitrate (NO3−) was a main driver behind the cyanobacterial community at the beginning of the growing season, while in late summer it was primarily associated with the soluble reactive phosphorus (SRP) concentration. A positive relationship was found between the MC quota per mcyE gene and water temperature. The most abundant variant—MC-RR—was associated with MC quota per mcyE gene, while other MC variants did not show any significant impact

    Using Microcystin Gene Copies to Determine Potentially-Toxic Blooms, Example from a Shallow Eutrophic Lake Peipsi

    Get PDF
    Global warming, paired with eutrophication processes, is shifting phytoplankton communities towards the dominance of bloom-forming and potentially toxic cyanobacteria. The ecosystems of shallow lakes are especially vulnerable to these changes. Traditional monitoring via microscopy is not able to quantify the dynamics of toxin-producing cyanobacteria on a proper spatio-temporal scale. Molecular tools are highly sensitive and can be useful as an early warning tool for lake managers. We quantified the potential microcystin (MC) producers in Lake Peipsi using microscopy and quantitative polymerase chain reaction (qPCR) and analysed the relationship between the abundance of the mcyE genes, MC concentration, MC variants and toxin quota per mcyE gene. We also linked environmental factors to the cyanobacteria community composition. In Lake Peipsi, we found rather moderate MC concentrations, but microcystins and microcystin-producing cyanobacteria were widespread across the lake. Nitrate (NO3−) was a main driver behind the cyanobacterial community at the beginning of the growing season, while in late summer it was primarily associated with the soluble reactive phosphorus (SRP) concentration. A positive relationship was found between the MC quota per mcyE gene and water temperature. The most abundant variant—MC-RR—was associated with MC quota per mcyE gene, while other MC variants did not show any significant impact

    Siseveekogud : õpik kõrgkoolidele

    Get PDF
    Inimeste kõige tavalisemad seosed siseveekogudega on matkamine, kalapüük, suplemine, janu kustutamine ja taimede kastmine. Et veekogude ääres viibimine mõjub paljudele rahustavalt, on jõgedel-järvedel miljonivaadete kaudu kindel koht ka kinnisvaraäris. Veekogudeta ei saa läbi sportlased (purjetajad, sõudjad ja motohuvilised). Leidub selliseidki indiviide, keda meelitavad mittesöödavad või koguni palja silmaga nähtamatud vee-elanikud. Eesti on väike madal maa, millel on pikk mererand, aga kus leidub ka palju siseveekogusid. Eriline on kahe suure järve – Peipsi ja Võrtsjärve – asumine lähestikku. Seisuvete pindala osakaalu järgi kogu riigi pindalast on Eesti Euroopas pärast Soomet ja Rootsit koos Norraga kolmandal-neljandal kohal. Eesti ja tema ümbrus on puhta veega seni niisiis hästi varustatud, kuid see rikkus ühtlasi kohustab veekogusid heaperemehelikult ja jätkusuutlikult majandama. Ka Eestis on muresid nii veevarude, veekogude kui nende seisundiga. Sisevete uurimine on Eestis kestnud juba üle 100 aasta. Seda on süstemaatiliselt korraldanud nii Looduseuurijate Selts, Tartu Riiklik Ülikool, Teaduste Akadeemia kui Maaülikool. Suurte järvede kõrval pole unustatud väikesi järvi ega vooluveekogusid. Uurida vee ja veekogude omadusi, arendada ja kasvatada nende spetsialiste ongi mõistlik seal, kus on, mida tundma õppida. Üha enam leitakse seoseid looduslike ja inimtekkeliste mõjurite ning ökosüsteemide vastuste vahel. Ühtlasi ühendatakse neid seoseid sotsiaalmajanduslike küsimuste ja looduskaitsega. Eesti siseveekogude kohta on peale arvukate ja enamasti võõrkeelsete teadusartiklite ilmunud ka eestikeelseid raamatuid. Siin neist väike loetelu: väikejärved (Eesti järved, 1968; Mäemets, 1977; Laarmaa jt 2019); Võrtsjärv (1973, 2003); Peipsi (1999, 2008), vooluveed (Järvekülg jt 2001; Timm jt 2019). Kalaraamatuid esindavad Mikelsaar (1984) ning Hunt (2019), veetaimi „Eesti taimede määraja“ (2010). Silmaga nähtavate veeselgrootute ülevaate pakub Timm (2015). Ülevaatlikku eestikeelset õpikut siseveekogude ning nende talitlemise kohta seni polnud. Eesti ülikoolides on kõigil kolmel õppetasandil (bakalaureuse-, magistri- ja doktoriõpe) õppekavasid, kus vajatakse teadmisi siseveekogudest. Võõrkeelseid eeskujusid leidub päris mitu, kuid need käsitlevad enamasti kas ainult hüdrobioloogiat või limnoloogiat. Esimene on elustiku-, teine keskkonna-alase suunitlusega. Uus õpik sisaldab mõlemaid ning sobib loodetavasti paljudele loodusteaduslikele ja looduskaitselistele kursustele, eriti bakalaureusetasemel. Õpik koosneb kolmest suurest alajaotusest: (1) siseveekogude füüsikalis-keemiline iseloomustus, levik ja teke; (2) elupaigad veekogudes, olulised elustikurühmad ning nendevahelised suhted; (3) siseveekogude majandamine, kaitse ja tervendamine. Peamiselt vaadeldakse Eesti siseveekogusid, aga seda kogu maailma taustal. Koostajad loodavad, et raamat annab lugejatele nii vastuseid küsimustele kui ka süvendab huvi sisevete kui kaunite, põnevate ning inimestele eluliselt oluliste loodusobjektide suhtes.Õpik on valminud riikliku programmi „Eestikeelsete kõrgkooliõpikute koostamine ja väljaandmine (2008–2012)“ raames ning Eesti Maaülikooli ja Sihtasutuse Archimedes osalisel toel

    Global patterns in endemicity and vulnerability of soil fungi

    Get PDF
    Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms

    Global patterns in endemicity and vulnerability of soil fungi

    Get PDF
    Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach. We found that the endemicity of all fungi and most functional groups peaks in tropical habitats, including Amazonia, Yucatan, West-Central Africa, Sri Lanka, and New Caledonia, with a negligible island effect compared with plants and animals. We also found that fungi are predominantly vulnerable to drought, heat and land-cover change, particularly in dry tropical regions with high human population density. Fungal conservation areas of highest priority include herbaceous wetlands, tropical forests, and woodlands. We stress that more attention should be focused on the conservation of fungi, especially root symbiotic arbuscular mycorrhizal and ectomycorrhizal fungi in tropical regions as well as unicellular early-diverging groups and macrofungi in general. Given the low overlap between the endemicity of fungi and macroorganisms, but high conservation needs in both groups, detailed analyses on distribution and conservation requirements are warranted for other microorganisms and soil organisms

    Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Get PDF
    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.Peer reviewe

    Connecting the multiple dimensions of global soil fungal diversity

    Get PDF
    15 páginas.- 5 figuras.- 99 referenciasHow the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes.This work was supported by the Estonian Science Foundation: PRG632 (to L.T.), Estonian Research Council: PRG1615 (to R.D.), Estonian Research Council: PRG1170 (to U.K. and Ka.Po.), Estonian Science Foundation: MOBTP198 (to St.An.), Novo Nordisk Fonden: NNF20OC0059948 (to L.T.), Norway-Baltic financial mechanism: EMP442 (to L.T., K.-A.B., and M.T.), King Saud University: DFSP-2020-2 (to L.T.), King Saud University: Highly Cited Program (to L.T.), European Regional Development Fund: Centre of Excellence EcolChange TK131 (to M.O., M.Z., Ü.M., U.K., and M.E.), Estonian Research Council: PRG1789 (to M.O. and I.H.), British Ecological Society: LRB17\1019 (MUSGONET) (to M.D.-B.), Spanish Ministry of Science and Innovation: PID2020-115813RA-I00 (to M.D.-B.), Spanish Ministry of Science and Innovation: SOIL4GROWTH (to M.D.-B.), Marie Sklodowska-Curie: 702057 (CLIMIFUN) (to M.D.- B.), European Research Council (ERC): grant 647038 [BIODESERT] (to F.T.M.), Generalitat Valenciana: CIDEGENT/2018/041 (to F.T.M.), Spanish Ministry of Science and Innovation: EUR2022-134048 (to F.T.M.), Estonian Research Council: PRG1065 (to M.M. and M.Z.), Swedish Research Council Formas: 2020-00807 (to Mo.Ba.), Swedish Research Council: 2019-05191 (to Al. An.), Swedish Foundation for Strategic Environmental Research MISTRA: Project BioPath (to Al. An.), Kew Foundation (to Al.An.), EEA Financial Mechanism Baltic Research Programme in Estonia: EMP442 (to Ke.Ar. and Je.An.), Ghent University Special Research Fund (BOF): Metusalem (to N.S.), Estonian Research Council: PSG825 (to K.R.), European Research Council (ERC): 101096403 (MLTOM23415R) (to Ü.M.), European Regional Development Fund (ERDF): 1.1.1.2/VIAA/2/18/298 (to D.K.), Estonian Research Council: PUT1170 (to I.H.), German Federal Ministry of Education and Research (BMBF): 01DG20015FunTrAf (to K.T.I., M.P., and N.Y.), Proyecto SIA: SA77210019 (ANID—Chile) (to C.M.), Fondecyt: 1190642 (ANID—Chile) (to R.G.), European Research Council (ERC): Synergy Grant 856506—LIFEPLAN (to T.R.), Academy of Finland: grant 322266 (to T.R.), U.S. National Science Foundation: DEB-0918591 (to T.H.), U.S. National Science Foundation: DEB-1556338 (to T.H.), U.S. National Science Foundation: DEB 1737898 (to G.B.), UNAM-PAPIIT: IV200223 (to R.G.-O.), Czech Science Foundation: 21-26883S (to J.D.), Estonian Research Council: PRG352 (to M.E.), NERC core funding: the BAS Biodiversity, Evolution and Adaptation Team (to K.K.N.), NERC-CONICYT: NE/P003079/1 (to E.M.B.), Carlsberg Foundation: CF18-0267 (to E.M.B.), Qatar Petroleum: QUEX-CAS-QP-RD-18/19 (to Ju.Al.), Russian Ministry of Science and Higher Education: 075-15-2021-1396 (to V.F. and V.O.), Secretaria de Ciencia y Técnica (SECYT) of Universidad Nacional de Córdoba and CONICET (to E.N.), HighLevel Talent Recruitment Plan of Yunnan Province 2021:“High-End Foreign Experts” (to Pe.Mo.), AUA grant from research council of UAE University: G00003654 (to S.M.), Ghent University: Bijzonder Onderzoeksfonds (to A.V.), Ghent University: Bijzonder Onderzoeksfonds (BOF-PDO2017-001201) (to E.D.C.), Ghent University: The Faculty Committee Scientific Research, FCWO (to E.D.C. and A.V.), The King Leopold III Fund for Nature Exploration and Conservation (to A.V. and E.D.C.), The Research Foundation—Flanders (FWO) (to E.D.C. and A.V.), The High-Level Talent Recruitment Plan of Yunnan Provinces: “Young Talents” Program (to D.-Q.D.), The HighLevel Talent Recruitment Plan of Yunnan Provinces: “High-End Foreign Experts" Program (to N. N.W.), IRIS scholarship for progressive and ambitious women (to L.H.), Estonian University of Life Sciences: P190250PKKH (to Kr.Pa.), Hungarian Academy of Sciences: Lendület Programme (96049) (to J.G.), Eötvös Loránd Research Network (to J.G.), Botswana International University of Science and Technology (to C.N.), and Higher Education Commision (HEC, Islamabad, Pakistan): Indigenous and International research support initiative program (IRSIP) scholarship (to M.S.)Peer reviewe

    Connecting the multiple dimensions of global soil fungal diversity

    Get PDF
    How the multiple facets of soil fungal diversity vary worldwide remains virtually unknown, hindering the management of this essential species-rich group. By sequencing high-resolution DNA markers in over 4000 topsoil samples from natural and human-altered ecosystems across all continents, we illustrate the distributions and drivers of different levels of taxonomic and phylogenetic diversity of fungi and their ecological groups. We show the impact of precipitation and temperature interactions on local fungal species richness (alpha diversity) across different climates. Our findings reveal how temperature drives fungal compositional turnover (beta diversity) and phylogenetic diversity, linking them with regional species richness (gamma diversity). We integrate fungi into the principles of global biodiversity distribution and present detailed maps for biodiversity conservation and modeling of global ecological processes

    Lake Peipsi 2018 (Littoral samples)

    No full text
    Phytoplankton samples were picked with bottle from among reed stands or from above thick beds of submerged plants from the depth 20-30 cm, were preserved in Lugol’s (acidified iodine) solution and counted under an inverted microscope (Utermöhl, 1958). 3 ml of preserved sample was settled overnight and counted in random fields or transects. Biovolumes of algal cells, colonies and/or filaments were calculated using assigned geometric shapes dimensions, and converted to biomass assuming the specific density of 1 g cm-3 in accordance with Edler (1979). Macroscopic colonies of Gloeotrichia echinulata were enumerated visually in 500 ml measuring cylinder. Counting units are independent (single) algal cells, colonies or filaments/trichomes. One species or taxon may be present in the sample as different counting units and may be counted at different magnifications. References of methods accepted Approved by CEN on 14 July 2006 “Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique)” (CEN 15204, 2006) European Standard EN 15204:2006 Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9, 1-38. Edler, L. (ed.), 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Baltic Marine Biologists WG 9. (13) Biovolume calculation for pelagic and benthic microalgae | Request PDF. Available from: https://www.researchgate.net/publication/220031275_Biovolume_calculation_for_pelagic_and_benthic_microalgae [accessed Oct 29 2018]. The most commonly used traditional biomass estimate for microalgae is cell biovolume, which is calculated from microscopically measured linear dimensions (Steinman et al. 1991, Snoeijs 1994, Sommer 1994, 1995, Hillebrand and Sommer 1997). Hand-books, most representative Huber-Pestalozzi, G., Komarek, J., Fott, B. 1983. Das Phytoplankton des Süsswassers. 7(1). Chlorophyceae. Chlorococcales. Stuttgart. 1044. S. Komarek, J., Anagnostidis, K. 1999. Süsswasserflora von Mitteleuropa. 19/1. Cyanoprocaryota. 1. Chroococcales. Elsevier Spectrum Academischer Verlag. Heidelberg. Berlin. 548 S. Komarek, J., Anagnostidis, K. 2005. Süsswasserflora von Mitteleuropa. 19/2. Cyanoprocaryota. 2. Oscillatoriales. Elsevier Spectrum Academischer Verlag. 759 S. Komárek, J., 2013. Cyanoprokaryota 3. Teil: Heterocystous Genera. Süsswasserflora von Mitteleuropa. B. 19/3. Springer Spektrum. 1130 S. Krammer, K., Lange-Bertalot, H. 1997-1991. Süsswasserflora von Mitteleuropa. Bacillariophyceae. B. 2, 1-4. Spectrum Academischer Verlag.Heidelberg. Berlin.. Popovský, J., Pfiester, L.A. 20008. Dinophyceae (Dinoflagellida). Süsswasserflora von Mitteleuropa. B. 6. Springer Spektrum. 272 S. Косинская Е.К. 1960. Флора споровых растений СССР. Том 5. Конъюгаты и Сцеплянки. (2). Изд. АН СССР. Москва-Ленинград. 706 стр. In Russian. Korshikov, A.A. (1953). Viznachnik prisnovodnikh vodorosley Ukrainsykoi RSR [Vyp] V. Pidklas Protokokovi (Protococcineae). Bakuol'ni (Vacuolales) ta Protokokovi (Protococcales) [The Freshwater Algae of the Ukrainian SSR. V. Sub-Class Protococcineae. Vacuolales and Protococcales]. pp. 1-439. Kyjv [Kiev]: Akad. NAUK URSR. In Ukrainian. Матвiенко О.М. 1965. Визначник прiсноводных водоростей Украǐнской РСР. 3. Частина 1. Золотисти водорости – Chrysophyta. Изд. Наукова Думка. Киǐв. 367 стр. In Ukrainian. Попова Т.Г. 1955. Определитель пресноводных водорослей. Вып. 7. Эвгленовые водоросли. Изд. Советская Наука, Москва. 282 стр. In Russian
    corecore