302 research outputs found

    Analysis of the dynamic changes in the soft palate and uvula in obstructive sleep apnea-hypopnea using ultrafast magnetic resonance imaging

    No full text
    Apnea and the respiratory cycle are dynamic processes in obstructive sleep apnea-hypopnea (OSAH), which occur only during sleep. Our study aimed to observe the dynamic changes in the soft palate and the uvula during wakefulness and sleep using ultrafast magnetic resonance imaging (UMRI) to provide reference data for the pathogenesis and treatment of OSAH. The dynamic changes in the soft palate and uvular tip of 15 male patients (average age: 50.43 ± 9.82 years) with OSAH were evaluated using UMRI of the upper airway while asleep and awake after 1 night of sleep deprivation. A series of midline sagittal images of the upper airway were obtained. The distance from the center of the soft palate to the x-axis (an extended line from the anterior nasal spine to the posterior nasal spine), from the uvular tip to the x-axis, from the center of the soft palate to the y-axis (a perpendicular line from the center of the pituitary to the x-axis), and from the uvular tip to the y-axis (designated as PX, UX, PY, and UY, respectively) were measured during sleep and wakefulness. The minimum PX, PY, UX, and UY were shorter during sleep than during wakefulness, whereas the maxima were longer during sleep (P < 0.01), the differences between the maximum and minimum PX, PY, UX, and UY were larger during sleep (P < 0.01). The upward, downward, forward, and backward ranges of movement of the soft palate and the uvular tip were larger during sleep in OSAH patients. This increased compliance may trigger each airway obstructive event

    Fluorescence spectra and elastic scattering characteristics of atmospheric aerosol in Las Cruces, New Mexico, USA: Variability of concentrations and possible constituents and sources of particles in various spectral clusters

    Get PDF
    The UV-excited laser-induced-fluorescence (UV-LIF) spectra of single atmospheric particles and the three-band integrating-nephelometer elastic scattering of atmospheric aerosol were measured during four approximately 24-h periods on May 2007 in Las Cruces, New Mexico, USA. Aerosol scattering measurements in the nephelometer red channel (50-nm band centered at 700-nm) ranged from around 3e10 times the molecular (Rayleigh) scattering background. On average 22.8% of particles with size greater than about 1 ÎŒm diameter have fluorescence above a preset fluorescence threshold. A hierarchical cluster analysis indicates that most of the single-particle UV-LIF spectra fall into about 10 categories (spectral clusters) as found previously at other geographic sites (Pinnick et al., 2004; Pan et al., 2007). The clusters include spectra characteristic of various humic/fulvic acids, humic-like-substances (HULIS), chemically aged terpenes, fungal spores, polycyclic aromatic hydrocarbons, bacteria, cellulose/ pollens, and mixtures of various organic carbon compounds. By far the most populated cluster category is similar to those of chemically aged terpenes/humic-materials; on average this population comprises about 62% of fluorescent particles. Clusters with spectra similar to that of some HULIS aerosol contain on average 10.0% of particles; those characteristic of some fungal spores (or perhaps mixtures of aromatic organic compounds) 8.4% of particles; bacteria-like spectra 1.6% of particles; and cellulose/pollen-like spectra 0.8% of particles. Measurements of fluorescent particles over relatively short (24 min) periods reveal that the concentrations of particles in the most populated clusters are highly correlated, suggesting that the particles populating them derive from the same region; these particles might be composed of crustal material coated with secondary organic carbon. On the other hand, concentrations of particles having cellulose-like spectra are generally uncorrelated with those in any other cluster. No clear distinction in fluorescent aerosol characteristics can be seen for different air mass trajectories arriving at the sampling site, suggesting that fluorescent aerosol particles are primarily of local origin. Integrations of the single-particle UV-LIF spectra over approximate 24 h time intervals reveal two broad peaks around 350 nm and 450 nm (for 263 nm excitation); the 450 nm peak is somewhat similar to that measured previously for water soluble organic carbon derived from aerosol collections. The 350 nm peak apparently has not been seen before in measurements of aerosol collections and may derive from nonsoluble primary biological aerosol particles such as fungal spores. Further measurements are needed to investigate in more detail the generality of these results

    Guiding outbreak management by the use of influenza A(H7Nx) virus sequence analysis

    Get PDF
    The recently identified human infections with avian influenza A(H7N9) viruses in China raise important questions regarding possible source and risk to humans. Sequence comparison with an influenza A(H7N7) outbreak in the Netherlands in 2003 and an A(H7N1) epidemic in Italy in 1999–2000 suggests that widespread circulation of A(H7N9) viruses must have occurred in China. The emergence of human adaptation marker PB2 E627K in human A(H7N9) cases parallels that of the fatal A(H7N7) human case in the Netherlands

    Poly ionic liquid nanovesicles via polymerization induced self assembly and their stabilization of Cu nanoparticles for tailored CO2 electroreduction

    Get PDF
    Herein, we report a straightforward, scalable synthetic route towards poly ionic liquid PIL homopolymer nanovesicles NVs with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one step free radical polymerization induced self assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs internal morphology is studied in detail by coarse grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra small 1 amp; 8764; 3 nm in size copper nanoparticles CuNPs and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5 fold enhancement in selectivity towards C1 products e.g., CH4 , compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 product

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Dijet production in √s = 7 TeV pp collisions with large rapidity gaps at the ATLAS experiment

    Get PDF
    A 6.8 nb−Âč sample of pp collision data collected under low-luminosity conditions at √s = 7 TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with pT > 20 GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in ΔηF, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, Ο˜, of the fractional momentum loss of the proton assuming single diffractive dissociation (pp → p X). Model comparisons indicate a dominant non-diffractive contribution up to moderately large ηF and small Ο˜, with a diffractive contribution which is significant at the highest ΔηF and the lowest Ο˜. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions

    Measurement of jet charge in dijet events from √s = 8  TeV pp collisions with the ATLAS detector

    Get PDF
    The momentum-weighted sum of the charges of tracks associated to a jet is sensitive to the charge of the initiating quark or gluon. This paper presents a measurement of the distribution of momentum-weighted sums, called jet charge, in dijet events using 20.3 fb−Âč of data recorded with the ATLAS detector at √s = 8 TeV in pp collisions at the LHC. The jet charge distribution is unfolded to remove distortions from detector effects and the resulting particle-level distribution is compared with several models. The pT dependence of the jet charge distribution average and standard deviation are compared to predictions obtained with several leading-order and next-to-leading-order parton distribution functions. The data are also compared to different Monte Carlo simulations of QCD dijet production using various settings of the free parameters within these models. The chosen value of the strong coupling constant used to calculate gluon radiation is found to have a significant impact on the predicted jet charge. There is evidence for a pT dependence of the jet charge distribution for a given jet flavor. In agreement with perturbative QCD predictions, the data show that the average jet charge of quark-initiated jets decreases in magnitude as the energy of the jet increases
    • 

    corecore