LAWRENCE LIVERMORE LABORATORY
 Inversity of California/Livermore. California

LASER-PLASMA CALCULATIONS WITH REFRACTION

Yu-Li Pan and Henry D. Shay

October 28, 1974

> This report was prepared is an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy. completeness or usefulness of any information, apparatus, product or process dissiused, or represents, that its use would not infringe privately owned tights.This Paper Was Prepared for the 16th Annual Meetingof the Division of Plasma Physicsof the American Physical SocietyOctober 28-31, 1974Albuquerque, New Mexico

Laser-Plasma Calculations with Refraction*
Yu-Li Pan and Henry D. Shay
University of California Lawrence Livemore Laboratory Livermore, California

The details of the ray tracing LASNEX ${ }^{1}$ has just been presented. Before using this code in actual laser-target simulations calculations, we made a number of checks to understand better the characteristics of the code. Sone of these test problems have analytic solutions. Therefore, the performance of the code calculation can be rigorously checked. We discuss here severai of these comparison problems, most of which demonstrate the ability of the code to predict correctly ray trajection.

The first of these test problems involves a light ray entering a medium with a linear density gradient. The analytic solution for this problem has been given by Shearer ${ }^{2}$. The first figure (Fig. 1) shows this result. Figure 2 shows the comparison between the analytic solution (dotted curve) and the code calculations.

The second problem involves light propagation in a medium with a quadratic density gradient transverse to the direction of propagation. The analytic solution for this problem is presented on the next figure (Fig. 3). Note the paraxial ray approximation. The value of A has been chosen as $\pi^{2} / 2500\left(1 / m i c r o n^{2}\right)$ so that the maximum and minimum of

[^0]the sinusoidal oscillation will appear every 25 micron. Further, to make the comparison simpler, we check the solution one term at a time. That is, we set R_{0}, and R_{0} ' to zere in sequerice.

We will discuss our results for positive A first. Fiqure 4 shows the quadratic gradient used in these calculations. The next figure (Fig. 5) shows the paths of the rays calculated by the code. The rays enter the problem from the 150 micron side with $\mathrm{R}_{0}{ }^{\prime}$ equal to zero. The box on the figure shows the zone size used in the calculation, (1 $\times 2$ micron). Next, we set R_{0} equal to zero and let $R_{0}{ }^{\prime}$ be 5,10 and 15 degrees. The paths of the rays calculated by the code are shown on the next fiqure (Fig. 6). Notice that the ray which is entering at 5 degrees disagrees badly with the analytic solution. This is especially disturbing because this ray is closer to the axis than the other ray in the problem. The reason for this disagreement is due to the zoning. We recall that the slope of the density is flat at the center. Thus, the change in the slope is maximum at this point. In addition, we note that the 5-degree ray traverses only about 1-i/2 zones in the R direction. (Can also point out again the way the density is calculated in the code.) The next fiqure (Fig. 7) shows the code calculation for different zone sizes. The + curve is the same one shown in the preceeding figure.

For negative values of A, the ray should diverge. Figure 8 shows the result of this calculation. The effect of zone size is again obvious.

A third test problem is the propagation of light ray inside a spherical plasma with a density profile which increases with r. Ginzburg ${ }^{3}$ presents an arialytical description of the trajectory of such a ray--as seen on Fig. 9. LASNEX predicts the correct reflection point for a ray initially at 45° to a radius vector.

In addition to verifying that trajectories are properly computed, test problems also show that the spatial variation of intensity and inverse bremsstrahlung absorption rate are, as well, correctly predicted.

One important caveat must be imposed on the use of geometrical ray optics: the neglect of diffraction can, in certain cases, be a severe oversight, especially in cases of thermal self-focusing. As discussed by Perkins and Valeo ${ }^{4}$ diffraction dominates in those cases where $D=k_{1}{ }^{2} L / 2 k_{0}$ is much greater than one. In such cases involving focusing to small diameter over long distances, geometrically optics predicts unphysicãl focusing.

With the proper attention to the regime of application and the appropriate zoning of the Lagrangian mesh, this ray tracing scheme is quite accurate.
3. V. Ginzburg, "The Propagation of Electromagnetic Waves in Plasmas",
(Addison-Wesley, Reading, Mass., 1964), p. 378 . 4F. W. Perkins and E. J. Valeo, Phys. Rev. Letters, 32, (1974), 1234.

Physical cases:

(A) Propagation of Gaussian-like intensity profile laser beam in a slightly absorbing medium.
(B) Absorption of pump ligit in solid laser rods.
(C) Dielectric and optical waveguides; light pipes.

$$
N(R)=N_{0}\left(1-\frac{1}{2} A R^{2}\right)
$$

For paraxial rays:

$$
\frac{D^{2} R}{D Z^{2}}+A R=0
$$

For positive A:

$$
R(Z)=R_{0} \cos A^{1 / 2} Z+R_{0}^{\prime} A^{-1 / 2} \sin A^{1 / 2} Z
$$

For negative A :
$R(Z)=R_{0} \cosh A^{1 / 2} Z+R_{0}^{\prime} A^{-1 / 2} \sinh A^{1 / 2} Z$

$$
\begin{aligned}
& n(r) r \sin \theta(r)=\text { constant } \\
& \text { Expect at turning point } n(r) r=n\left(r_{0}\right) r_{0} \sin \theta\left(r_{0}\right)
\end{aligned}
$$

[^0]: *Research perfomed under the auspices of the U. S. Atomic Energy TCominission.
 G. B. Zimmerman, LLL Rpt. UCRL-74811, 0ct. 1973.
 J. W. Shearer, Phys. of Fluids 14 183, 1971.

