842 research outputs found

    Mid-Infrared diagnostics of metal-rich HII regions from VLT and Spitzer Spectroscopy of Young Massive Stars in W31

    Get PDF
    We present near-IR VLT/ISAAC and mid-IR Spitzer/IRS spectroscopy of the young massive cluster in the W31 star-forming region. H-band spectroscopy provides refined classifications for four cluster members O stars with respect to Blum et al. In addition, photospheric features are detected in the massive Young Stellar Object (mYSO) #26. Spectroscopy permits estimates of stellar temperatures and masses, from which a cluster age of ~0.6 Myr and distance of 3.3 kpc are obtained, in excellent agreement with Blum et al. IRS spectroscopy reveals mid-infrared fine structure line fluxes of [Ne II-III] and [S III-IV] for four O stars and five mYSOs. In common with previous studies, stellar temperatures of individual stars are severely underestimated from the observed ratios of fine-structure lines, despite the use of contemporary stellar atmosphere and photoionization models. We construct empirical temperature calibrations based upon the W31 cluster stars of known spectral type, supplemented by two inner Milky Way ultracompact (UC) HII regions whose ionizing star properties are established. Calibrations involving [NeIII] 15.5um/[NeII] 12.8um, [SIV] 10.5um/[NeII] 12.8um or [ArIII] 9.0um/[NeII] 12.8um have application in deducing the spectral types of early- to mid- O stars for other inner Milky Way compact and UCHII regions. Finally, evolutionary phases and timescales for the massive stellar content in W31 are discussed, due to the presence of numerous young massive stars at different formation phases in a `coeval' cluster.Comment: 16 pages, 13 figures, accepted for MNRA

    One-micron spectroscopy of normal OB stars

    Get PDF
    We have obtained spectra of 70 normal OB stars in the near-IR I (1-μm) band. The strongest features are those due to lines of the hydrogen Paschen series and neutral and ionized helium, which are, for the most part, in absorption. The information content in this spectral range is sufficient for only a rough classification of hot stars into `early O', `late O' and `B' types. Curiously, the leading He i triplet line, He i λ1.0830 μm, is usually not detectable, although in a few stars it is in emission; its behaviour generally correlates with the leading helium singlet line, He i λ 2.058 μ m. These two features appear to be present in emission only in stars with extremes of mass loss or wind extension

    High-mass X-ray binaries and OB-runaway stars

    Full text link
    High-mass X-ray binaries (HMXBs) represent an important phase in the evolution of massive binary systems. HMXBs provide unique diagnostics to test massive-star evolution, to probe the physics of radiation-driven winds, to study the process of mass accretion, and to measure fundamental parameters of compact objects. As a consequence of the supernova explosion that produced the neutron star (or black hole) in these systems, HMXBs have high space velocities and thus are runaways. Alternatively, OB-runaway stars can be ejected from a cluster through dynamical interactions. Observations obtained with the Hipparcos satellite indicate that both scenarios are at work. Only for a minority of the OB runaways (and HMXBs) a wind bow shock has been detected. This might be explained by the varying local conditions of the interstellar medium.Comment: 15 pages, latex (sty file included) with 5 embedded figures (one in jpg format), to appear in Proc. "Influence of binaries on stellar population studies", Eds. Vanbeveren, Van Rensberge

    The role of input noise in transcriptional regulation

    Get PDF
    Even under constant external conditions, the expression levels of genes fluctuate. Much emphasis has been placed on the components of this noise that are due to randomness in transcription and translation; here we analyze the role of noise associated with the inputs to transcriptional regulation, the random arrival and binding of transcription factors to their target sites along the genome. This noise sets a fundamental physical limit to the reliability of genetic control, and has clear signatures, but we show that these are easily obscured by experimental limitations and even by conventional methods for plotting the variance vs. mean expression level. We argue that simple, global models of noise dominated by transcription and translation are inconsistent with the embedding of gene expression in a network of regulatory interactions. Analysis of recent experiments on transcriptional control in the early Drosophila embryo shows that these results are quantitatively consistent with the predicted signatures of input noise, and we discuss the experiments needed to test the importance of input noise more generally.Comment: 11 pages, 5 figures minor correction

    Astronomical Spectroscopy

    Full text link
    Spectroscopy is one of the most important tools that an astronomer has for studying the universe. This chapter begins by discussing the basics, including the different types of optical spectrographs, with extension to the ultraviolet and the near-infrared. Emphasis is given to the fundamentals of how spectrographs are used, and the trade-offs involved in designing an observational experiment. It then covers observing and reduction techniques, noting that some of the standard practices of flat-fielding often actually degrade the quality of the data rather than improve it. Although the focus is on point sources, spatially resolved spectroscopy of extended sources is also briefly discussed. Discussion of differential extinction, the impact of crowding, multi-object techniques, optimal extractions, flat-fielding considerations, and determining radial velocities and velocity dispersions provide the spectroscopist with the fundamentals needed to obtain the best data. Finally the chapter combines the previous material by providing some examples of real-life observing experiences with several typical instruments.Comment: An abridged version of a chapter to appear in Planets, Stars and Stellar Systems, to be published in 2011 by Springer. Slightly revise

    FDG–PET. A possible prognostic factor in head and neck cancer

    Get PDF
    Previous studies have shown that high uptake of 18F-fluoro-2-deoxy-glucose in head and neck cancer, as determined by the standardized uptake value on positron emission tomography scan, was associated with poor survival. The aim of this study was to confirm the association and to establish whether a high standardized uptake value had prognostic significance. Seventy-three consecutive patients with newly diagnosed squamous cell carcinoma of the head and neck underwent a positron emission tomography study before treatment. Age, gender, performance status tumour grade, stage, maximal tumour diameter and standardized uptake value were analyzed for their possible association with survival. The median standardized uptake value for all primary tumours was 7.16 (90% range 2.30 to 18.60). In univariate survival analysis the cumulative survival was decreased as the stage, tumour diameter and standardized uptake value increased. An standardized uptake value of 10 was taken as a cut-off for high and low uptake tumours. When these two groups were compared, an standardized uptake value >10 predicted for significantly worse outcome (P=0.003). Multivariate analysis demonstrated that an standardized uptake value >10 provided prognostic information independent of the tumour stage and diameter (P=0.002). We conclude that high FDG uptake (standardized uptake value>10) on positron emission tomography is an important marker for poor outcome in primary squamous cell carcinoma of the head and neck. Standardized uptake value may be useful in distinguishing those tumours with a more aggressive biological nature and hence identifying patients that require intensive treatment protocols including hyperfractionated radiotherapy and/or chemotherapy

    MHC-class-II are expressed in a subpopulation of human neural stem cells in vitro in an IFN gamma-independent fashion and during development

    Get PDF
    This work was supported by grants from Great Ormond Street Hospital Children’s Charity, Newlife Foundation, the Antony Nolan Trust, a studentship to CAG from Consejo Nacional de Ciencia y Tecnologia (CONACyT) and Instituto Jaliscience de la Juventud (IJJ), Mexico and GOSH NIHR Biomedical Research Centre. The human embryonic and fetal material was provided by the Human Developmental Biology Resource (http://hdbr.org) jointly funded by the Medical Research Council (grant G070089) and The Wellcome Trust (grant GR082557)

    Does the availability of positron emission tomography modify diagnostic strategies for solitary pulmonary nodules? An observational study in France

    Get PDF
    International audienceBACKGROUND: Previous studies showed that at the individual level, positron emission tomography (PET) has some benefits for patients and physicians in terms of cancer management and staging. We aimed to describe the benefits of (PET) in the management of solitary pulmonary nodules (SPNs) in a population level, in terms of the number of diagnostic and invasive tests performed, time to diagnosis and factors determining PET utilization. METHODS: In an observational study, we examined reports of computed tomography (CT) performed and mentioning "spherical lesion", "nodule" or synonymous terms. We found 11,515 reports in a before-PET period, 2002-2003, and 20,075 in an after-PET period, 2004-2005. Patients were followed through their physician, who was responsible for diagnostic management. RESULTS: We had complete data for 112 patients (73.7%) with new cases of SPN in the before-PET period and 250 (81.4%) in the after-PET period. Patients did not differ in mean age (64.9 vs. 64.8 years). The before-PET patients underwent a mean of 4 tests as compared with 3 tests for the after-PET patients (p = 0.08). Patients in the before-PET period had to wait 41.4 days, on average, before receiving a diagnosis as compared with 24.0 days, on average, for patients in the after-PET period who did not undergo PET (p < 0.001). In the after-PET period, 11% of patients underwent PET during the diagnostic process. A spiculated nodule was more likely to determine prescription for PET (p < 0.001). Multivariate analysis revealed that patients in both periods underwent fewer tests when PET was prescribed by general practitioners (p < 0.001) and if the nodule was not spiculated (p < 0.001). The proportion of unnecessary invasive approaches prescribed (47% vs. 49%) did not differ between the groups. CONCLUSION: In our study, 1 year after the availability of PET, the technology was not the first choice for diagnostic management of SPN. Even though we observed a tendency for reduced number of tests and mean time to diagnosis with PET, these phenomena did not fully relate to PET availability in health communities. In addition, the availability of PET in the management of SPN diagnosis did not reduce the overall rate of unnecessary invasive approaches
    corecore