3,111 research outputs found
Quantum Communications with Compressed Decoherence Using Bright Squeezed Light
We propose a scheme for long-distance distribution of quantum entanglement in
which the entanglement between qubits at intermediate stations of the channel
is established by using bright light pulses in squeezed states coupled to the
qubits in cavities with a weak dispersive interaction. The fidelity of the
entanglement between qubits at the neighbor stations (10 km apart from each
other) obtained by postselection through the balanced homodyne detection of 7
dB squeezed pulses can reach F=0.99 without using entanglement purification, at
same time, the probability of successful generation of entanglement is 0.34.Comment: 4 pages, 2 figure
Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array
We propose a near-infrared super resolution imaging system without a lens or
a mirror but with an array of metallic nanoshell particle chain. The imaging
array can plasmonically transfer the near-field components of dipole sources in
the incoherent and coherent manners and the super resolution images can be
reconstructed in the output plane. By tunning the parameters of the metallic
nanoshell particle, the plasmon resonance band of the isolate nanoshell
particle red-shifts to the near-infrared region. The near-infrared super
resolution images are obtained subsequently. We calculate the field intensity
distribution at the different planes of imaging process using the finite
element method and find that the array has super resolution imaging capability
at near-infrared wavelengths. We also show that the image formation highly
depends on the coherence of the dipole sources and the image-array distance.Comment: 15 pages, 6 figure
Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model
Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions
Study of B -> \rho \pi decays at Belle
This paper describes a study of B meson decays to the pseudoscalar-vector
final state \rho\pi using 31.9\times 10^6 B\bar{B} events collected with the
Belle detector at KEKB. The branching fractions B(B^+ \to \rho^0\pi^+) =
(8.0^{+2.3+0.7}_{-2.0-0.7}) \times 10^{-6} and B(B^0 -> \rho^{+-} \pi^{-+}) =
(20.8^{+6.0+2.8}_{-6.3-3.1}) \times 10^{-6} are obtained. In addition, a 90%
confidence level upper limit of B(B^0 \to \rho^0\pi^0) < 5.3 \times 10^{-6}is
reported.Comment: 14 pages, 3 figures, to be submitted to Phys. Lett.
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Observation of the Baryonic Flavor-Changing Neutral Current Decay Lambda_b -> Lambda mu+ mu-
We report the first observation of the baryonic flavor-changing neutral
current decay Lambda_b -> Lambda mu+ mu- with 24 signal events and a
statistical significance of 5.8 Gaussian standard deviations. This measurement
uses ppbar collisions data sample corresponding to 6.8fb-1 at sqrt{s}=1.96TeV
collected by the CDF II detector at the Tevatron collider. The total and
differential branching ratios for Lambda_b -> Lambda mu+ mu- are measured. We
find B(Lambda_b -> Lambda mu+ mu-) = [1.73+-0.42(stat)+-0.55(syst)] x 10^{-6}.
We also report the first measurement of the differential branching ratio of B_s
-> phi mu+ mu- using 49 signal events. In addition, we report branching ratios
for B+ -> K+ mu+ mu-, B0 -> K0 mu+ mu-, and B -> K*(892) mu+ mu- decays.Comment: 8 pages, 2 figures, 4 tables. Submitted to Phys. Rev. Let
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Response of Laser-Induced Thermal Lens Effect at Solid Surface
Recently Kuo et al. [1,2] and Satio et al.[3] presented the surface-thermal lens (STL) technique, this novel photothermal deformation technique has attracted great attention because it is a highly sensitive, noncontact and nondestructive measurement[4–6]. In this technique, a modulated pump beam is focused on the sample surface to produce the surface deformation and a cw probe beam is incident at the deformation region. Differing from the conventional photothermal deformation techniques, the spot size of the probe beam at the sample surface is much larger than the pump beam one. Then the probe beam reflected from the surface produces a diffraction pattern at the detection plane. More recently, STL technique has been successfully applied to study the temperature dependence of the thermal conductivity of semiconductor materials[5], weak absorption of optical thin films[6] and characterization of the solid materials[7,8]. However, the mechanism of STL phenomena has not been completely understood. Most theoretical models took no account of the influence of the air-thermal lens (ATL), although some experiment showed that the air significantly affected the detected diffraction pattern[2]. In addition, it is necessary to characterize frequency responses of signals because the response is used to determine the thermal property of the solid materials[5]
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
