285 research outputs found

    The status of GEO 600

    Get PDF
    The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Electroproduction of two light vector mesons in next-to-leading BFKL: study of systematic effects

    Full text link
    The forward electroproduction of two light vector mesons is the first example of a collision process between strongly interacting colorless particles for which the amplitude can be written completely within perturbative QCD in the Regge limit with next-to-leading accuracy. In a previous paper we have given a numerical determination of the amplitude in the case of equal photon virtualities by using a definite representation for the amplitude and a definite optimization method for the perturbative series. Here we estimate the systematic uncertainty of our previous determination, by considering a different representation of the amplitude and different optimization methods of the perturbative series. Moreover, we compare our result for the differential cross section at the minimum momentum transfer with a different approach, based on collinear kernel improvement.Comment: 17 pages, 11 figures; journal version, new figures and discussion adde

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review

    Seismic Vulnerability of Heritage Churches in Québec: the Néo-Roman Typology

    Get PDF
    Several seismic events have demonstrated the vulnerability of masonry churches. The long seismic history of the Italian territory has provided materials to observe and to study the structural performance of churches. Since the 1976 Friuli earthquake many studies have contributed to the definition of specific damage and vulnerability assessment methods for churches, based on the identification of macro-elements and kinematic mechanisms. In this context, the paper presents the application of a vulnerability assessment methodology developed and currently applied in Italy to a case study representative of the néo-roman church typology in Montreal, Québec. The study is part of a collaborative project between Politecnico di Milano and École de Technologie Supérieure of Montreal. The relevance of such a study derives from the moderate seismicity of Montreal associated to a high density of churches. Starting from a previous inventory of 108 churches in Montreal Island, the Néo-roman church typology was selected to be investigated. Specificities of this typology are the position of the bell tower in the middle of the façade and the interaction between the timber structure and masonry walls. This combination between the façade and bell tower macro-elements requires to reconsider the mechanisms associated to these elements in the original reference method. A detailed survey of the roof and bell tower timber structures of a néo-roman church was done, and a three-dimensional numerical model was developed for a better understanding of this type of structure. Modal analysis of a global model was then carried out and the first results of the modal shapes discussed

    Deep Einstein@Home All-sky Search for Continuous Gravitational Waves in LIGO O3 Public Data

    Get PDF
    We present the results of an all-sky search for continuous gravitational waves in the public LIGO O3 data. The search covers signal frequencies 20.0 Hz ≤ f ≤ 800.0 Hz and a spin-down range down to −2.6 × 10−9 Hz s−1, motivated by detectability studies on synthetic populations of Galactic neutron stars. This search is the most sensitive all-sky search to date in this frequency/spin-down region. The initial search was performed using the first half of the public LIGO O3 data (O3a), utilizing graphical processing units provided in equal parts by the volunteers of the Einstein@Home computing project and by the ATLAS cluster. After a hierarchical follow-up in seven stages, 12 candidates remain. Six are discarded at the eighth stage, by using the remaining O3 LIGO data (O3b). The surviving six can be ascribed to continuous-wave fake signals present in the LIGO data for validation purposes. We recover these fake signals with very high accuracy with our last stage search, which coherently combines all O3 data. Based on our results, we set upper limits on the gravitational-wave amplitude h 0 and translate these into upper limits on the neutron star ellipticity and on the r-mode amplitude. The most stringent upper limits are at 203 Hz, with h 0 = 8.1 × 10−26 at the 90% confidence level. Our results exclude isolated neutron stars rotating faster than 5 ms with ellipticities greater than 5 × 10 − 8 d 100 pc within a distance d from Earth and r-mode amplitudes α ≥ 10 − 5 d 100 pc for neutron stars spinning faster than 150 Hz

    Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrt{s} = 7 TeV pp collisions using 1 fb-1 of ATLAS data

    Get PDF
    We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.Comment: 18 pages plus author list (30 pages total), 9 figures, 4 tables, final version to appear in Physical Review
    corecore