2,242 research outputs found

    Screening of Spherical Colloids beyond Mean Field -- A Local Density Functional Approach

    Get PDF
    We study the counterion distribution around a spherical macroion and its osmotic pressure in the framework of the recently developed Debye-H"uckel-Hole-Cavity (DHHC) theory. This is a local density functional approach which incorporates correlations into Poisson-Boltzmann theory by adding a free energy correction based on the One Component Plasma. We compare the predictions for ion distribution and osmotic pressure obtained by the full theory and by its zero temperature limit with Monte Carlo simulations. They agree excellently for weakly developed correlations and give the correct trend for stronger ones. In all investigated cases the DHHC theory and its computationally simpler zero temperature limit yield better results than the Poisson-Boltzmann theory.Comment: 10 pages, 4 figures, 2 tables, RevTeX4-styl

    Conformations of Linear DNA

    Full text link
    We examine the conformations of a model for under- and overwound DNA. The molecule is represented as a cylindrically symmetric elastic string subjected to a stretching force and to constraints corresponding to a specification of the link number. We derive a fundamental relation between the Euler angles that describe the curve and the topological linking number. Analytical expressions for the spatial configurations of the molecule in the infinite- length limit were obtained. A unique configuraion minimizes the energy for a given set of physical conditions. An elastic model incorporating thermal fluctuations provides excellent agreement with experimental results on the plectonemic transition.Comment: 5 pages, RevTeX; 6 postscript figure

    Ly-alpha Emission-Line Galaxies at z = 3.1 in the Extended Chandra Deep Field South

    Full text link
    We describe the results of an extremely deep, 0.28 deg^2 survey for z = 3.1 Ly-alpha emission-line galaxies in the Extended Chandra Deep Field South. By using a narrow-band 5000 Anstrom filter and complementary broadband photometry from the MUSYC survey, we identify a statistically complete sample of 162 galaxies with monochromatic fluxes brighter than 1.5 x 10^-17 ergs cm^-2 s^-1 and observers frame equivalent widths greater than 80 Angstroms. We show that the equivalent width distribution of these objects follows an exponential with a rest-frame scale length of w_0 = 76 +/- 10 Angstroms. In addition, we show that in the emission line, the luminosity function of Ly-alpha galaxies has a faint-end power-law slope of alpha = -1.49 +/- 0.4, a bright-end cutoff of log L^* = 42.64 +/- 0.2, and a space density above our detection thresholds of 1.46 +/- 0.12 x 10^-3 h70^3 galaxies Mpc^-3. Finally, by comparing the emission-line and continuum properties of the LAEs, we show that the star-formation rates derived from Ly-alpha are ~3 times lower than those inferred from the rest-frame UV continuum. We use this offset to deduce the existence of a small amount of internal extinction within the host galaxies. This extinction, coupled with the lack of extremely-high equivalent width emitters, argues that these galaxies are not primordial Pop III objects, though they are young and relatively chemically unevolved.Comment: 45 pages, 15 figures, accepted for publication in the Astrophysical Journa

    Topological entropy of a stiff ring polymer and its connection to DNA knots

    Full text link
    We discuss the entropy of a circular polymer under a topological constraint. We call it the {\it topological entropy} of the polymer, in short. A ring polymer does not change its topology (knot type) under any thermal fluctuations. Through numerical simulations using some knot invariants, we show that the topological entropy of a stiff ring polymer with a fixed knot is described by a scaling formula as a function of the thickness and length of the circular chain. The result is consistent with the viewpoint that for stiff polymers such as DNAs, the length and diameter of the chains should play a central role in their statistical and dynamical properties. Furthermore, we show that the new formula extends a known theoretical formula for DNA knots.Comment: 14pages,11figure

    Negative electrostatic contribution to the bending rigidity of charged membranes and polyelectrolytes screened by multivalent counterions

    Full text link
    Bending rigidity of a charged membrane or a charged polyelectrolyte screened by monovalent counterions is known to be enhanced by electrostatic effects. We show that in the case of screening by multivalent counterions the electrostatic effects reduce the bending rigidity. This inversion of the sign of the electrostatic contribution is related to the formation of two-dimensional strongly correlated liquids (SCL) of counterions at the charged surface due to strong lateral repulsion between them. When a membrane or a polyelectrolyte is bent, SCL is compressed on one side and stretched on the other so that thermodynamic properties of SCL contribute to the bending rigidity. Thermodynamic properties of SCL are similar to those of Wigner crystal and are anomalous in the sense that the pressure, compressibility and screening radius of SCL are negative. This brings about substantial negative correction to the bending rigidity. For the case of DNA this effect qualitatively agrees with experiment.Comment: 8 pages, 2 figure

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure

    Conformational Instability of Rodlike Polyelectrolytes due to Counterion Fluctuations

    Full text link
    The effective elasticity of highly charged stiff polyelectrolytes is studied in the presence of counterions, with and without added salt. The rigid polymer conformations may become unstable due to an effective attraction induced by counterion density fluctuations. Instabilities at the longest, or intermediate length scales may signal collapse to globule, or necklace states, respectively. In the presence of added-salt, a generalized electrostatic persistence length is obtained, which has a nontrivial dependence on the Debye screening length. It is also found that the onset of conformational instability is a re-entrant phenomenon as a function of polyelectrolyte length for the unscreened case, and the Debye length or salt concentration for the screened case. This may be relevant in understanding the experimentally observed re-entrant condensation of DNA.Comment: 8 pages, 4 figure

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore