354 research outputs found

    Focus detection in digital holography by cross-sectional images of propagating waves

    Get PDF
    In digital holography, computing a focused image of an object requires a prior knowledge of the distance of the object from the camera. When this distance is not known, it is necessary to repeat the image reconstruction at a range of distances followed by evaluation of each image with a sharpness metric to determine the in-focus distance of the object. Here, we present a method to find the focus distance by processing the image transverse to the object plane instead of the processing in the image plane as it is usually done. Since the reconstructed hologram image is spatially symmetric around the focus point along the propagation axis, simply finding the symmetry points in the image cross-section specifies the focus location, and no other sharpness metrics are necessary to use. Also with this method, it is possible to find the focus distances of multiple objects simultaneously, including the phase only objects without any staining. We will present the simulations and the experimental results obtained by a digital holographic microscope

    Security System Responsive to Optical Fiber Having Bragg Grating

    Get PDF
    An optically responsive electronic lock is disclosed comprising an optical fiber serving as a key and having Bragg gratings placed therein. Further, an identification system is disclosed which has the optical fiber serving as means for tagging and identifying an object. The key or tagged object is inserted into a respective receptacle and the Bragg gratings cause the optical fiber to reflect a predetermined frequency spectra pattern of incident light which is detected by a decoder and compared against a predetermined spectrum to determine if an electrical signal is generated to either operate the lock or light a display of an authentication panel

    Heat transfer in steady-periodic flows over heated microwires

    Get PDF
    Effects of Reynolds number (Re), nondimensional drive frequency (Srp) and amplitude of yoscillations in the flow on the heat transfer coefficient and its frequency response characteristics for oscillatory flows over a micro wire are presented here. Time-averaged Nusselt numbers (Nu) at the stagnation point and averaged over the cylinder are calculated for Re = 10, 30 and 50, .001 < Srp < 1., and oscillation amplitudes, Vp, of 0.1 and 0.2 (for Re = 50). We used a formulation that allows decomposition of the flow into mean and periodic components, and used finite-element simulations to solve for the mean flow over the cylinder. Periodic component of the flow contributes to an artificial body force in the Navier-Stokes equation. According to our simulations, time-averaged Nusselt numbers are not strongly affected by oscillations. Largest increase in the time-averaged average Nu is only 3% larger than its unforced value. Nusselt oscillations have multiple modes and we used Fourier Transform to identify each mode and calculate its corresponding amplitude. The mode for which the frequency is twice as much as the driving frequency is the dominant mode for Srp up to 0.1 for all Reynolds numbers studied here. For larger drive frequencies, the second mode dies off; for Re = 30 and 50 amplitude of the first mode at the drive frequency takes over. For large drive frequencies (Srp~1) all modes tend to diminish

    Device characteristics of antenna-coupled metal-insulator-metal diodes (rectenna) using Al2O3, TiO2, and Cr2O3 as insulator layer for energy harvesting applications

    Get PDF
    Antenna-coupled metal-insulator-metal devices are most potent candidate for future energy harvesting devices. The reason for that they are ultra-high speed devices that can rectify the electromagnetic radiation at high frequencies. In addition to their speed, they are also small devices that can have more number of devices in unit area. In this work, it is aimed design and develop a device which can harvest and detect IR radiation

    Model, design, and fabrication of antenna coupled metal-insulator-metal diodes for IR sensing

    Get PDF
    There is increasing demand for devices operating at room temperature for IR sensing and imaging. Antenna coupled metal-insulator-metal (MIM) diodes are potential candidates in this field. The reasons are miniaturizing features and femtosecond operation of these devices: smaller sizes lead to more pixels in limited areas and quantum tunneling phenomenon leads to faster operation. In this work, it is aimed to design and develop a device that can act as IR detector at room temperature

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
    corecore