625 research outputs found

    CubeSat Radiation Hardness Assurance Beyond Total Dose: Evaluating Single Event Effects

    Get PDF
    Radiation poses known and serious risks to smallsat survivability and mission duration, with effects falling into two categories: long-term total ionizing dose (TID) and instantaneous single event effects (SEE). Although literature exists on the topic of addressing TID in smallsats, few resources exist for addressing SEEs. Many varieties of SEEs exist, such as bit upsets and latch ups, which can occur in any electronic component containing active semiconductors (such as transistors). SEE consequences range from benign to destructive, so mission reliability can be enhanced by implementing fault protection strategies based on predicted SEE rates. Unfortunately, SEE rates are most reliably estimated through experimental testing that is often too costly for smallsat-scale missions. Prior test data published by larger programs exist, but may be sparse or incompatible with the environment of a particular mission. Despite these limitations, a process may be followed to gain insights and make informed design decisions for smallsats in the absence of hardware testing capabilities or similar test data. This process is: (1) Define the radiation environment; (2) identify the most critical and/or susceptible components on a spacecraft; (3) perform a search for compatible prior test data and/or component class data; (4) evaluate mission-specific SEE rates from available data; (5) study the rates alongside the mission requirements to identify high-risk areas of potential mitigation. The methodology developed in this work is based on the multi-institutional, National Science Foundation (NSF) Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX) mission. The steps taken during SWARM-EX’s radiation analysis alongside the detailed methodology serve as a case study for how these techniques can be applied to increasing the reliability of a university-scale smallsat mission

    Coordinating Development of the SWARM-EX CubeSat Swarm Across Multiple Institutions

    Get PDF
    The Space Weather Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX) is a National Science Foundation (NSF) sponsored CubeSat mission distributed across six colleges and universities in the United States. The project has three primary goals: (1) contributing to aeronomy and space weather knowledge, (2) demonstrating novel engineering technology, and (3) advancing higher education. The scientific focus of SWARM-EX is to study the spatial and temporal variability of ion-neutral interactions in the equatorial Ionosphere-Thermosphere (I-T) region. Since the mission consists of three spacecraft operating in a swarm, SWARM-EX will take in-situ measurements of the neutral and ion composition on timescales of less than an orbital period to study the persistence and correlation between different phenomena in the I-T region. The engineering objectives of SWARM-EX are focused on advancing the state of the art in spacecraft formation flying. In addition to being the first passively safe, autonomous formation of more than two spacecraft, SWARM-EX will demonstrate several other key innovations. These include a novel hybrid propulsive/differential drag control scheme and the realization of a distributed aeronomy sensor. Asa project selected by the NSF for its broader impacts as well as its intellectual merit, SWARM-EX aims to use CubeSat development as a vehicle for education. The six collaborating institutions have varying levels of CubeSat experience and involve students who range from first-year undergraduates to Ph.D. candidates. These differences in knowledge, as well as the distributed nature of the program, present a tremendous educational opportunity, but also raise challenges such as cross-institutional communication and coordination, document sharing and file management, and hardware development. By detailing its procedures for overcoming these challenges, the SWARM-EX team believes that it may serve as a case study for the coordination of a successful CubeSat program distributed across multiple institutions

    Gastroparesis and functional dyspepsia: excerpts from the AGA/ANMS meeting

    Full text link
    Despite the relatively high prevelance of gastroparesis and functional dyspepsia, the aetiology and pathophysiology of these disorders remain incompletely understood. Similarly, the diagnostic and treatment options for these two disorders are relatively limited despite recent advances in our understanding of both disorders.This manuscript reviews the advances in the understanding of the epidemiology, pathophysiology, diagnosis, and treatment of gastroparesis and functional dyspepsia as discussed at a recent conference sponsored by the American Gastroenterological Association (AGA) and the American Neurogastroenterology and Motility Society (ANMS). Particular focus is placed on discussing unmet needs and areas for future research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78690/1/j.1365-2982.2009.01434.x.pd

    Protocol for a randomised controlled trial evaluating the effects of providing essential medicines at no charge: the Carefully seLected and Easily Accessible at No Charge Medicines (CLEAN Meds) trial

    Get PDF
    Introduction: Cost-related non-adherence to medicines is common in low-income, middle-income and high-income countries such as Canada. Medicine non-adherence is associated with poor health outcomes and increased mortality. This randomised trial will test the impact of a carefully selected list of essential medicines at no charge (compared with usual medicine access) in primary care patients reporting cost-related non-adherence. Methods and analysis This is an open-label, parallel two-arm, superiority, individually randomised controlled trial conducted in three primary care sites (one urban, two rural) in Ontario, Canada, that was codesigned by a community guidance panel. Adult patients (≥18 years) who report cost-related non-adherence to medicines are eligible to participate in the study. Participants will be randomised to receive free and convenient access to a carefully selected list of 125 essential medicines (based on the WHO’s Model List of Essential Medicines) or usual means of medicine access. Care for patients in both groups will otherwise be unchanged. The primary outcome of this trial is adherence to appropriately prescribed medicines. Secondary outcomes include medicine adherence, appropriate prescribing, blood pressure, haemoglobin A1c, low-density lipoprotein cholesterol, patient-oriented outcomes and healthcare costs. All participants will be followed for at least 12 months. Ethics and dissemination Ethics approval was obtained in all three participating sites. Results of the main trial and secondary outcomes will be submitted for publication in a peer-reviewed journal and discussed with members of the public and decision makers. Trial registration number NCT02744963

    Gene Expression Profiling of a Mouse Model of Pancreatic Islet Dysmorphogenesis

    Get PDF
    In the past decade, several transcription factors critical for pancreas organogenesis have been identified. Despite this success, many of the factors necessary for proper islet morphogenesis and function remain uncharacterized. Previous studies have shown that transgenic over-expression of the transcription factor Hnf6 specifically in the pancreatic endocrine cell lineage resulted in disruptions in islet morphogenesis, including dysfunctional endocrine cell sorting, increased individual islet size, increased number of peripheral endocrine cell types, and failure of islets to migrate away from the ductal epithelium. The mechanisms whereby maintained Hnf6 causes defects in islet morphogenesis have yet to be elucidated.We exploited the dysmorphic islets in Hnf6 transgenic animals as a tool to identify factors important for islet morphogenesis. Genome-wide microarray analysis was used to identify differences in the gene expression profiles of late gestation and early postnatal total pancreas tissue from wild type and Hnf6 transgenic animals. Here we report the identification of genes with an altered expression in Hnf6 transgenic animals and highlight factors with potential importance in islet morphogenesis. Importantly, gene products involved in cell adhesion, cell migration, ECM remodeling and proliferation were found to be altered in Hnf6 transgenic pancreata, revealing specific candidates that can now be analyzed directly for their role in these processes during islet development.This study provides a unique dataset that can act as a starting point for other investigators to explore the role of the identified genes in pancreatogenesis, islet morphogenesis and mature beta cell function

    Effect on treatment adherence of distributing essential medicines at no charge : the CLEAN Meds randomized clinical trial

    Get PDF
    This work is supported by grant 381409 from the Canadian Institutes for Health Research, the Ontario SPOR Support Unit that is supported by the Canadian Institutes of Health Research and the Province of Ontario, the Canada Research Chairs program, and the St Michael’s Hospital Foundation.Importance: Nonadherence to treatment with medicines is common globally, even for life-saving treatments. Cost is one important barrier to access, and only some jurisdictions provide medicines at no charge to patients. Objective: To determine whether providing essential medicines at no charge to outpatients who reported not being able to afford medicines improves adherence. Design, Setting, and Participants: A multicenter, unblinded, parallel, 2-group, superiority, outcomes assessor-blinded, individually randomized clinical trial conducted at 9 primary care sites in Ontario, Canada, enrolled 786 patients between June 1, 2016, and April 28, 2017, who reported cost-related nonadherence. Follow-up occurred at 12 months. The primary analysis was performed using an intention-to-treat principle. Interventions: Patients were randomly allocated to receive free medicines on a list of essential medicines in addition to otherwise usual care (n = 395) or usual medicine access and usual care (n = 391). Main Outcomes and Measures: The primary outcome was adherence to treatment with all medicines that were appropriately prescribed for 1 year. Secondary outcomes were hemoglobin A1c level, blood pressure, and low-density lipoprotein cholesterol levels 1 year after randomization in participants taking corresponding medicines. Results: Among the 786 participants analyzed (439 women and 347 men; mean [SD] age, 51.7 [14.3] years), 764 completed the trial. Adherence to treatment with all medicines was higher in those randomized to receive free distribution (151 of 395 [38.2%]) compared with usual access (104 of 391 [26.6%]; difference, 11.6%; 95% CI, 4.9%-18.4%). Control of type 1 and 2 diabetes was not significantly improved by free distribution (hemoglobin A1c, -0.38%; 95% CI, -0.76% to 0.00%), systolic blood pressure was reduced (-7.2 mm Hg; 95% CI, -11.7 to -2.8 mm Hg), and low-density lipoprotein cholesterol levels were not affected (-2.3 mg/dL; 95% CI, -14.7 to 10.0 mg/dL). Conclusions and Relevance: The distribution of essential medicines at no charge for 1 year increased adherence to treatment with medicines and improved some, but not other, disease-specific surrogate health outcomes. These findings could help inform changes to medicine access policies such as publicly funding essential medicines. Trial Registration: ClinicalTrials.gov identifier: NCT02744963.Publisher PDFPeer reviewe

    Single domain antibodies: promising experimental and therapeutic tools in infection and immunity

    Get PDF
    Antibodies are important tools for experimental research and medical applications. Most antibodies are composed of two heavy and two light chains. Both chains contribute to the antigen-binding site which is usually flat or concave. In addition to these conventional antibodies, llamas, other camelids, and sharks also produce antibodies composed only of heavy chains. The antigen-binding site of these unusual heavy chain antibodies (hcAbs) is formed only by a single domain, designated VHH in camelid hcAbs and VNAR in shark hcAbs. VHH and VNAR are easily produced as recombinant proteins, designated single domain antibodies (sdAbs) or nanobodies. The CDR3 region of these sdAbs possesses the extraordinary capacity to form long fingerlike extensions that can extend into cavities on antigens, e.g., the active site crevice of enzymes. Other advantageous features of nanobodies include their small size, high solubility, thermal stability, refolding capacity, and good tissue penetration in vivo. Here we review the results of several recent proof-of-principle studies that open the exciting perspective of using sdAbs for modulating immune functions and for targeting toxins and microbes

    Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016.

    Get PDF
    Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. FINDINGS: In 2016, there were 27·08 million (95% uncertainty interval [UI] 24·30-30·30 million) new cases of TBI and 0·93 million (0·78-1·16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55·50 million (53·40-57·62 million) and of SCI was 27·04 million (24·98-30·15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8·4% (95% UI 7·7 to 9·2), whereas that of SCI did not change significantly (-0·2% [-2·1 to 2·7]). Age-standardised incidence rates increased by 3·6% (1·8 to 5·5) for TBI, but did not change significantly for SCI (-3·6% [-7·4 to 4·0]). TBI caused 8·1 million (95% UI 6·0-10·4 million) YLDs and SCI caused 9·5 million (6·7-12·4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. INTERPRETATION: TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore