210 research outputs found

    α-Synuclein Suppression by Targeted Small Interfering RNA in the Primate Substantia Nigra

    Get PDF
    The protein α-synuclein is involved in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Its toxic potential appears to be enhanced by increased protein expression, providing a compelling rationale for therapeutic strategies aimed at reducing neuronal α-synuclein burden. Here, feasibility and safety of α-synuclein suppression were evaluated by treating monkeys with small interfering RNA (siRNA) directed against α-synuclein. The siRNA molecule was chemically modified to prevent degradation by exo- and endonucleases and directly infused into the left substantia nigra. Results compared levels of α-synuclein mRNA and protein in the infused (left) vs. untreated (right) hemisphere and revealed a significant 40–50% suppression of α-synuclein expression. These findings could not be attributable to non-specific effects of siRNA infusion since treatment of a separate set of animals with luciferase-targeting siRNA produced no changes in α-synuclein. Infusion with α-synuclein siRNA, while lowering α-synuclein expression, had no overt adverse consequences. In particular, it did not cause tissue inflammation and did not change (i) the number and phenotype of nigral dopaminergic neurons, and (ii) the concentrations of striatal dopamine and its metabolites. The data represent the first evidence of successful anti-α-synuclein intervention in the primate substantia nigra and support further development of RNA interference-based therapeutics

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Progressive Neurodegeneration or Endogenous Compensation in an Animal Model of Parkinson's Disease Produced by Decreasing Doses of Alpha-Synuclein

    Get PDF
    The pathological hallmarks of Parkinson's disease (PD) are degeneration of dopamine (DA) neurons of the substantia nigra (SN) and the presence of alpha-synuclein (α-syn)-rich Lewy bodies in DA cells that remain. To model these aspects of the disease, we previously showed that high titer (5.1×10exp12 gp/ml) AAV1/2 driven expression of A53T α-syn in the SN of rats caused nigrostriatal pathology including a loss of DA neurons, but also with toxicity in the GFP control group. In the current study, we evaluate the effects of two lower titers by dilution of the vector (1∶3 [1.7×10exp12] and 1∶10 [5.1×10exp11]) to define a concentration that produced pathology specific for α-syn. In GFP and empty vector groups there were no behavioural or post-mortem changes at 3 or 6 weeks post-administration at either vector dose. Dilution of the AAV1/2 A53T α-syn (1∶3) produced significant paw use asymmetry, reductions in striatal tyrosine hydroxylase (TH), and increases in DA turnover at 3 weeks in the absence of overt pathology. By 6 weeks greater evidence of pathology was observed and included, reductions in SN DA neurons, striatal DA, TH and DA-transporter, along with a sustained behavioural deficit. In contrast, the 1∶10 AAV1/2 A53T α-syn treated animals showed normalization between 3 and 6 weeks in paw use asymmetry, reductions in striatal TH, and increased DA turnover. Progression of dopaminergic deficits using the 1∶3 titer of AAV1/2 A53Tα-syn provides a platform for evaluating treatments directed at preventing and/or reversing synucleinopathy. Use of the 1∶10 titer of AAV1/2 A53T α-syn provides an opportunity to study mechanisms of endogenous compensation. Furthermore, these data highlight the need to characterize the titer of vector being utilized, when using AAV to express pathogenic proteins and model disease process, to avoid producing non-specific effects

    Nitrated α-Synuclein Induces the Loss of Dopaminergic Neurons in the Substantia Nigra of Rats

    Get PDF
    BACKGROUND: The pathology of Parkinson's disease (PD) is characterized by the degeneration of the nigrostriatal dopaminergic pathway, as well as the formation of intraneuronal inclusions known as Lewy bodies and Lewy neurites in the substantia nigra. Accumulations of nitrated alpha-synuclein are demonstrated in the signature inclusions of Parkinson's disease. However, whether the nitration of alpha-synuclein is relevant to the pathogenesis of PD is unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, effect of nitrated alpha-synuclein to dopaminergic (DA) neurons was determined by delivering nitrated recombinant TAT-alpha-synuclein intracellular. We provide evidence to show that the nitrated alpha-synuclein was toxic to cultured dopaminergic SHSY-5Y neurons and primary mesencephalic DA neurons to a much greater degree than unnitrated alpha-synuclein. Moreover, we show that administration of nitrated alpha-synuclein to the substantia nigra pars compacta of rats caused severe reductions in the number of DA neurons therein, and led to the down-regulation of D(2)R in the striatum in vivo. Furthermore, when administered to the substantia nigra of rats, nitrated alpha-synuclein caused PD-like motor dysfunctions, such as reduced locomotion and motor asymmetry, however unmodified alpha-synuclein had significantly less severe behavioral effects. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence that alpha-synuclein, principally in its nitrated form, induce DA neuron death and may be a major factor in the etiology of PD

    Recent advances in understanding hypertension development in sub-Saharan Africa

    Get PDF
    Consistent reports indicate that hypertension is a particularly common finding in black populations. Hypertension occurs at younger ages and is often more severe in terms of blood pressure levels and organ damage than in whites, resulting in a higher incidence of cardiovascular disease and mortality. This review provides an outline of recent advances in the pathophysiological understanding of blood pressure elevation and the consequences thereof in black populations in Africa. This is set against the backdrop of populations undergoing demanding and rapid demographic transition, where infection with the Human Immunodeficiency Virus predominates, and where under and over-nutrition coexist. Collectively, recent findings from Africa illustrate an increased lifetime risk to hypertension from foetal life onwards. From young ages black populations display early endothelial dysfunction, increased vascular tone and reactivity, microvascular structural adaptions, as well as increased aortic stiffness resulting in elevated central and brachial blood pressures during the day and night, when compared to whites. Together with knowledge on the contributions of sympathetic activation and abnormal renal sodium handling, these pathophysiological adaptations result in subclinical and clinical organ damage at younger ages. This overall enhanced understanding on the determinants of blood pressure elevation in blacks encourages (a) novel approaches to assess and manage hypertension in Africa better, (b) further scientific discovery to develop more effective prevention and treatment strategies, and (c) policymakers and health advocates to collectively contribute in creating health-promoting environments in Africa

    Post translational changes to α-synuclein control iron and dopamine trafficking : a concept for neuron vulnerability in Parkinson's disease

    Get PDF
    Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease

    Measurement of differential cross sections and W + /W − cross-section ratios for W boson production in association with jets at √s =8 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the W boson production cross section and the W + /W − cross-section ratio, both in association with jets, in proton--proton collisions at s √ =8 TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb −1 . Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the W boson. For a subset of the observables, the differential cross sections of positively and negatively charged W bosons are measured separately. In the cross-section ratio of W + /W − the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proto

    Measurements of normalized differential cross sections for tt̄ production in pp collisions at √(s)=7  TeV using the ATLAS detector

    Get PDF
    Measurements of normalized differential cross sections for top-quark pair production are presented as a function of the top-quark transverse momentum, and of the mass, transverse momentum, and rapidity of the t¯t system, in proton–proton collisions at a center-of-mass energy of √s=7  TeV. The data set corresponds to an integrated luminosity of 4.6  fb−1, recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one lepton and at least four jets with at least one of the jets tagged as originating from a b-quark. The measured spectra are corrected for detector efficiency and resolution effects and are compared to several Monte Carlo simulations and theory calculations. The results are in fair agreement with the predictions in a wide kinematic range. Nevertheless, data distributions are softer than predicted for higher values of the mass of the t¯t system and of the top-quark transverse momentum. The measurements can also discriminate among different sets of parton distribution functions

    Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 μb −1 μb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    Studies of Zγ production in association with a high-mass dijet system in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    The production of a Z boson and a photon in association with a high-mass dijet system is studied using 20.2 fb −1 of proton-proton collision data at a centre-of-mass energy of s=8 TeV recorded with the ATLAS detector in 2012 at the Large Hadron Collider. Final states with a photon and a Z boson decaying into a pair of either electrons, muons, or neutrinos are analysed. Electroweak and total pp → Zγjj cross-sections are extracted in two fiducial regions with different sensitivities to electroweak production processes. Quartic couplings of vector bosons are studied in regions of phase space with an enhanced contribution from pure electroweak production, sensitive to vector-boson scattering processes VV → Zγ. No deviations from Standard Model predictions are observed and constraints are placed on anomalous couplings parameterized by higher-dimensional operators using effective field theory.[Figure not available: see fulltext.]
    corecore