1,837 research outputs found
Billion-atom Synchronous Parallel Kinetic Monte Carlo Simulations of Critical 3D Ising Systems
An extension of the synchronous parallel kinetic Monte Carlo (pkMC) algorithm
developed by Martinez {\it et al} [{\it J.\ Comp.\ Phys.} {\bf 227} (2008)
3804] to discrete lattices is presented. The method solves the master equation
synchronously by recourse to null events that keep all processors time clocks
current in a global sense. Boundary conflicts are rigorously solved by adopting
a chessboard decomposition into non-interacting sublattices. We find that the
bias introduced by the spatial correlations attendant to the sublattice
decomposition is within the standard deviation of the serial method, which
confirms the statistical validity of the method. We have assessed the parallel
efficiency of the method and find that our algorithm scales consistently with
problem size and sublattice partition. We apply the method to the calculation
of scale-dependent critical exponents in billion-atom 3D Ising systems, with
very good agreement with state-of-the-art multispin simulations
Galerkin Method in the Gravitational Collapse: a Dynamical System Approach
We study the general dynamics of the spherically symmetric gravitational
collapse of a massless scalar field. We apply the Galerkin projection method to
transform a system of partial differential equations into a set of ordinary
differential equations for modal coefficients, after a convenient truncation
procedure, largely applied to problems of turbulence. In the present case, we
have generated a finite dynamical system that reproduces the essential features
of the dynamics of the gravitational collapse, even for a lower order of
truncation. Each initial condition in the space of modal coefficients
corresponds to a well definite spatial distribution of scalar field. Numerical
experiments with the dynamical system show that depending on the strength of
the scalar field packet, the formation of black-holes or the dispersion of the
scalar field leaving behind flat spacetime are the two main outcomes. We also
found numerical evidence that between both asymptotic states, there is a
critical solution represented by a limit cycle in the modal space with period
.Comment: 9 pages, revtex4, 10 ps figures; Phys. Rev. D, in pres
On Aharonov-Casher bound states
In this work bound states for the Aharonov-Casher problem are considered.
According to Hagen's work on the exact equivalence between spin-1/2
Aharonov-Bohm and Aharonov-Casher effects, is known that the
term cannot be neglected in the
Hamiltonian if the spin of particle is considered. This term leads to the
existence of a singular potential at the origin. By modeling the problem by
boundary conditions at the origin which arises by the self-adjoint extension of
the Hamiltonian, we derive for the first time an expression for the bound state
energy of the Aharonov-Casher problem. As an application, we consider the
Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the
expression for the harmonic oscillator energies and compare it with the
expression obtained in the case without singularity. At the end, an approach
for determination of the self-adjoint extension parameter is given. In our
approach, the parameter is obtained essentially in terms of physics of the
problem.Comment: 11 pages, matches published versio
Dimensional Dependence of Black Hole Formation in Self-Similar Collapse of Scalar Field
We study classical and quantum self-similar collapses of a massless scalar
field in higher dimensions, and examine how the increase in the number of
dimensions affects gravitational collapse and black hole formation. Higher
dimensions seem to favor formation of black hole rather than other final
states, in that the initial data space for black hole formation enlarges as
dimension increases. On the other hand, the quantum gravity effect on the
collapse lessens as dimension increases. We also discuss the gravitational
collapse in a brane world with large but compact extra dimensions.Comment: Improved a few arguments and added a figur
Systematics of species of the genus Akodon (Rodentia: Sigmodontinae) in southeastern Brazil and implications for the biogeography of the Campos de Altitude
http://deepblue.lib.umich.edu/bitstream/2027.42/111041/1/MP197.pd
Simulating Cosmic Microwave Background maps in multi-connected spaces
This article describes the computation of cosmic microwave background
anisotropies in a universe with multi-connected spatial sections and focuses on
the implementation of the topology in standard CMB computer codes. The key
ingredient is the computation of the eigenmodes of the Laplacian with boundary
conditions compatible with multi-connected space topology. The correlators of
the coefficients of the decomposition of the temperature fluctuation in
spherical harmonics are computed and examples are given for spatially flat
spaces and one family of spherical spaces, namely the lens spaces. Under the
hypothesis of Gaussian initial conditions, these correlators encode all the
topological information of the CMB and suffice to simulate CMB maps.Comment: 33 pages, 55 figures, submitted to PRD. Higher resolution figures
available on deman
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Liste alphabétique des titres
In the last years many populations of anurans have declined and extinctions have been recorded. They were related to environmental pollution, changes of land use and emerging diseases. The main objective of this study was to determine copper sensitivity of the anuran of the Amazon Rhinella granulosa and Scinax ruber tadpoles at stage 25 and Scinax ruber eggs exposed for 96 h to copper concentrations ranging from 15 µg Cu L-1 to 94 µg Cu L-1. LC50 at 96 h of Rhinella granulosa Gosner 25, Scinax ruber Gosner 25 and Scinax ruber eggs in black water of the Amazon were 23.48, 36.37 and 50.02 µg Cu L-1, respectively. The Biotic Ligand Model was used to predict the LC50 values for these species and it can be considered a promising tool for these tropical species and water conditions. Copper toxicity depends on water physical-chemical composition and on the larval stage of the tadpoles. The Gosner stage 19-21 (related to the appearance of external gills) is the most vulnerable and the egg stage is the most resistant. In case of contamination by copper, the natural streams must have special attention, since copper is more bioavailable.Nos últimos anos foram registrados muitas extinções e declínios de populações de anuros. Eles estavam relacionados com a poluição do ambiente, a mudanças no uso da terra e ao surgimento de doenças. O principal objetivo deste estudo foi determinar a sensibilidade dos anuros amazônicos ao cobre. Os girinos de Scinax ruber e Rhinella granulosa no estadio 25 e os ovos de Scinax ruber foram expostos por 96 horas a concentrações de cobre entre 15 µg Cu L-1 a 94 µg Cu L-1. A CL50 -96 h dos girinos de Rhinella granulosa, dos girinos de Scinax ruber e dos ovos de Scinax ruber em águas pretas da Amazônia foram 23,48; 36,37 e 50,02 µg Cu L-1, respectivamente. O modelo do ligante biótico foi usado para prever os valores de CL50 para essas duas espécies e pode ser considerado uma ferramenta promissora para essas espécies tropicais e para essas condições de água. A Toxicidade de cobre depende da composição físico-química da água e do estagio larval dos girinos. O estadio 19-21 de Gosner (relacionados ao aparecimento das brânquias externas) são os mais vulnerável e o estagio de ovo é o mais resistente. Em caso de contaminação por cobre, os igarapés naturais devem ter uma atenção especial, uma vez que o cobre é mais biodisponível nesse ambiente
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
Sensors Characterization and Control of Measurement Systems Based on Thermoresistive Sensors via Feedback Linearization
- …
