7 research outputs found
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Antiphased dust deposition and productivity in the Antarctic Zone over 1.5 million years
The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report a high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, close to the main dust source, Patagonia. Our deep-ocean records cover the last 1.5 Ma, thus doubling that from Antarctic ice-cores. We find a 5 to 15-fold increase in dust deposition during glacials and a 2 to 5-fold increase in biogenic silica deposition, reflecting higher ocean productivity during interglacials. This antiphasing persisted throughout the last 25 glacial cycles. Dust deposition became more pronounced across the Mid-Pleistocene Transition (MPT) in the Southern Hemisphere, with an abrupt shift suggesting more severe glaciations since ~0.9 Ma. Productivity was intermediate pre-MPT, lowest during the MPT and highest since 0.4 Ma. Generally, glacials experienced extended sea-ice cover, reduced bottom-water export and Weddell Gyre dynamics, which helped lower atmospheric CO2 levels
Recommended from our members
Origin of the Scotia Sea Magnetic Susceptibility Signal Across the MIS6-MIS5 Transition
Patterns of variability in Pleistocene magnetic susceptibility (k) from deep-sea sediment cores from the Scotia Sea show a striking similarity to patterns of dust flux recorded in the EPICA Dronning Maud Land (EDML) ice core. Antarctic marine k records broadly reflect the interplay of lithogenic sediment provenance, biological productivity, sediment transport processes, and post-depositional diagenesis. Here we explore the origin of the Scotia Sea k record via a detailed rock magnetic study across the transition from MIS 6 to MIS 5. We analyzed bulk sediment and grain size separates in order to construct magnetic signatures of iceberg rafted debris (IBRD), sortable silt, and eolian input. The MIS 6-MIS 5 transition consists of three lithologies, a high k silty-clay-rich diatomaceous mud deposited during the glacial interval, an IBRD-rich but low k silty clay that marks the onset of deglaciation, and a low k diatomaceous ooze in which IBRD decreases forward through time. The high k glacial sediment is characterized by multi-domain hysteresis parameters, low χARM/χ values, S ratios near 1, and thermomagnetic curves indicative of low-Ti titanomagnetite. The absence of k peaks in the IBRD-rich silty-clay and IBRD rich diatomaceous ooze likely reflects the weakly magnetic lithogenic detritus supplied by Weddell Sea Embayment (WSE) ice streams, such as sandstone, quartzite, metasedimentary lithologies, phyllite and schist observed in lateral moraines adjacent to ice streams of the eastern WSE. The deglacial interval is characterized by elevated MR/MS, χARM/χ, and HIRM values, and decreased S-ratios in the bulk sediment, suggesting a greater proportion of high coercivity minerals such as hematite or goethite in the iron oxide assemblage. Preliminary data from grain size separates indicates that the clay mass fraction is > 0.5 in all three lithologies. Clay is also the dominant size fraction in the EDML ice core dust, with particle sizes generally < 5 μm. The Scotia Sea clay fraction k values are a factor 1.5 to 5 weaker than the silt fraction k values, and therefore are not the main carrier of the bulk k signal. The rock magnetic signatures of Scotia Sea sediment will be compared to those of terrestrial till and bedrock from the WSE, and to those of potential dust sources in South America to identify the sediment sources and environmental processes responsible for the k signal
Recommended from our members
Origin of the Scotia Sea Magnetic Susceptibility Signal Across the MIS6-MIS5 Transition
Patterns of variability in Pleistocene magnetic susceptibility (k) from deep-sea sediment cores from the Scotia Sea show a striking similarity to patterns of dust flux recorded in the EPICA Dronning Maud Land (EDML) ice core. Antarctic marine k records broadly reflect the interplay of lithogenic sediment provenance, biological productivity, sediment transport processes, and post-depositional diagenesis. Here we explore the origin of the Scotia Sea k record via a detailed rock magnetic study across the transition from MIS 6 to MIS 5. We analyzed bulk sediment and grain size separates in order to construct magnetic signatures of iceberg rafted debris (IBRD), sortable silt, and eolian input. The MIS 6-MIS 5 transition consists of three lithologies, a high k silty-clay-rich diatomaceous mud deposited during the glacial interval, an IBRD-rich but low k silty clay that marks the onset of deglaciation, and a low k diatomaceous ooze in which IBRD decreases forward through time. The high k glacial sediment is characterized by multi-domain hysteresis parameters, low χARM/χ values, S ratios near 1, and thermomagnetic curves indicative of low-Ti titanomagnetite. The absence of k peaks in the IBRD-rich silty-clay and IBRD rich diatomaceous ooze likely reflects the weakly magnetic lithogenic detritus supplied by Weddell Sea Embayment (WSE) ice streams, such as sandstone, quartzite, metasedimentary lithologies, phyllite and schist observed in lateral moraines adjacent to ice streams of the eastern WSE. The deglacial interval is characterized by elevated MR/MS, χARM/χ, and HIRM values, and decreased S-ratios in the bulk sediment, suggesting a greater proportion of high coercivity minerals such as hematite or goethite in the iron oxide assemblage. Preliminary data from grain size separates indicates that the clay mass fraction is > 0.5 in all three lithologies. Clay is also the dominant size fraction in the EDML ice core dust, with particle sizes generally < 5 μm. The Scotia Sea clay fraction k values are a factor 1.5 to 5 weaker than the silt fraction k values, and therefore are not the main carrier of the bulk k signal. The rock magnetic signatures of Scotia Sea sediment will be compared to those of terrestrial till and bedrock from the WSE, and to those of potential dust sources in South America to identify the sediment sources and environmental processes responsible for the k signal
Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016 : a systematic analysis for the Global Burden of Disease Study 2016
Background Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. Findings In 2016, there were 27.08 million (95% uncertainty interval [UI] 24.30-30.30 million) new cases of TBI and 0.93 million (0.78-1.16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55.50 million (53.40-57.62 million) and of SCI was 27.04 million (24 .98-30 .15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8.4% (95% UI 7.7 to 9.2), whereas that of SCI did not change significantly (-0.2% [-2.1 to 2.7]). Age-standardised incidence rates increased by 3.6% (1.8 to 5.5) for TBI, but did not change significantly for SCI (-3.6% [-7.4 to 4.0]). TBI caused 8.1 million (95% UI 6. 0-10. 4 million) YLDs and SCI caused 9.5 million (6.7-12.4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. Interpretation TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases:subgroup analyses of the RESTART randomised, open-label trial
Background: Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy. Methods: RESTART was a prospective, randomised, open-label, blinded-endpoint, parallel-group trial at 122 hospitals in the UK that assessed whether starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. For this prespecified subgroup analysis, consultant neuroradiologists masked to treatment allocation reviewed brain CT or MRI scans performed before randomisation to confirm participant eligibility and rate features of the intracerebral haemorrhage and surrounding brain. We followed participants for primary (recurrent symptomatic intracerebral haemorrhage) and secondary (ischaemic stroke) outcomes for up to 5 years (reported elsewhere). For this report, we analysed eligible participants with intracerebral haemorrhage according to their treatment allocation in primary subgroup analyses of cerebral microbleeds on MRI and in exploratory subgroup analyses of other features on CT or MRI. The trial is registered with the ISRCTN registry, number ISRCTN71907627. Findings: Between May 22, 2013, and May 31, 2018, 537 participants were enrolled, of whom 525 (98%) had intracerebral haemorrhage: 507 (97%) were diagnosed on CT (252 assigned to start antiplatelet therapy and 255 assigned to avoid antiplatelet therapy, of whom one withdrew and was not analysed) and 254 (48%) underwent the required brain MRI protocol (122 in the start antiplatelet therapy group and 132 in the avoid antiplatelet therapy group). There were no clinically or statistically significant hazards of antiplatelet therapy on recurrent intracerebral haemorrhage in primary subgroup analyses of cerebral microbleed presence (2 or more) versus absence (0 or 1) (adjusted hazard ratio [HR] 0·30 [95% CI 0·08–1·13] vs 0·77 [0·13–4·61]; pinteraction=0·41), cerebral microbleed number 0–1 versus 2–4 versus 5 or more (HR 0·77 [0·13–4·62] vs 0·32 [0·03–3·66] vs 0·33 [0·07–1·60]; pinteraction=0·75), or cerebral microbleed strictly lobar versus other location (HR 0·52 [0·004–6·79] vs 0·37 [0·09–1·28]; pinteraction=0·85). There was no evidence of heterogeneity in the effects of antiplatelet therapy in any exploratory subgroup analyses (all pinteraction>0·05). Interpretation: Our findings exclude all but a very modest harmful effect of antiplatelet therapy on recurrent intracerebral haemorrhage in the presence of cerebral microbleeds. Further randomised trials are needed to replicate these findings and investigate them with greater precision. Funding: British Heart Foundation
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases : subgroup analyses of the RESTART randomised, open-label trial
Background: Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy. Methods: RESTART was a prospective, randomised, open-label, blinded-endpoint, parallel-group trial at 122 hospitals in the UK that assessed whether starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. For this prespecified subgroup analysis, consultant neuroradiologists masked to treatment allocation reviewed brain CT or MRI scans performed before randomisation to confirm participant eligibility and rate features of the intracerebral haemorrhage and surrounding brain. We followed participants for primary (recurrent symptomatic intracerebral haemorrhage) and secondary (ischaemic stroke) outcomes for up to 5 years (reported elsewhere). For this report, we analysed eligible participants with intracerebral haemorrhage according to their treatment allocation in primary subgroup analyses of cerebral microbleeds on MRI and in exploratory subgroup analyses of other features on CT or MRI. The trial is registered with the ISRCTN registry, number ISRCTN71907627. Findings: Between May 22, 2013, and May 31, 2018, 537 participants were enrolled, of whom 525 (98%) had intracerebral haemorrhage: 507 (97%) were diagnosed on CT (252 assigned to start antiplatelet therapy and 255 assigned to avoid antiplatelet therapy, of whom one withdrew and was not analysed) and 254 (48%) underwent the required brain MRI protocol (122 in the start antiplatelet therapy group and 132 in the avoid antiplatelet therapy group). There were no clinically or statistically significant hazards of antiplatelet therapy on recurrent intracerebral haemorrhage in primary subgroup analyses of cerebral microbleed presence (2 or more) versus absence (0 or 1) (adjusted hazard ratio [HR] 0·30 [95% CI 0·08–1·13] vs 0·77 [0·13–4·61]; pinteraction=0·41), cerebral microbleed number 0–1 versus 2–4 versus 5 or more (HR 0·77 [0·13–4·62] vs 0·32 [0·03–3·66] vs 0·33 [0·07–1·60]; pinteraction=0·75), or cerebral microbleed strictly lobar versus other location (HR 0·52 [0·004–6·79] vs 0·37 [0·09–1·28]; pinteraction=0·85). There was no evidence of heterogeneity in the effects of antiplatelet therapy in any exploratory subgroup analyses (all pinteraction>0·05). Interpretation: Our findings exclude all but a very modest harmful effect of antiplatelet therapy on recurrent intracerebral haemorrhage in the presence of cerebral microbleeds. Further randomised trials are needed to replicate these findings and investigate them with greater precision. Funding: British Heart Foundation