1,444 research outputs found

    The Suprafroth (Superconducting Froth)

    Full text link
    The structure and dynamics of froths have been subjects of intense interest due to the desire to understand the behaviour of complex systems where topological intricacy prohibits exact evaluation of the ground state. The dynamics of a traditional froth involves drainage and drying in the cell boundaries, thus it is irreversible. We report a new member to the froths family: suprafroth, in which the cell boundaries are superconducting and the cell interior is normal phase. Despite very different microscopic origin, topological analysis of the structure of the suprafroth shows that statistical von Neumann and Lewis laws apply. Furthermore, for the first time in the analysis of froths there is a global measurable property, the magnetic moment, which can be directly related to the suprafroth structure. We propose that this suprafroth is a new, model system for the analysis of the complex physics of two-dimensional froths

    The Significance of the CC-Numerical Range and the Local CC-Numerical Range in Quantum Control and Quantum Information

    Full text link
    This paper shows how C-numerical-range related new strucures may arise from practical problems in quantum control--and vice versa, how an understanding of these structures helps to tackle hot topics in quantum information. We start out with an overview on the role of C-numerical ranges in current research problems in quantum theory: the quantum mechanical task of maximising the projection of a point on the unitary orbit of an initial state onto a target state C relates to the C-numerical radius of A via maximising the trace function |\tr \{C^\dagger UAU^\dagger\}|. In quantum control of n qubits one may be interested (i) in having U\in SU(2^n) for the entire dynamics, or (ii) in restricting the dynamics to {\em local} operations on each qubit, i.e. to the n-fold tensor product SU(2)\otimes SU(2)\otimes >...\otimes SU(2). Interestingly, the latter then leads to a novel entity, the {\em local} C-numerical range W_{\rm loc}(C,A), whose intricate geometry is neither star-shaped nor simply connected in contrast to the conventional C-numerical range. This is shown in the accompanying paper (math-ph/0702005). We present novel applications of the C-numerical range in quantum control assisted by gradient flows on the local unitary group: (1) they serve as powerful tools for deciding whether a quantum interaction can be inverted in time (in a sense generalising Hahn's famous spin echo); (2) they allow for optimising witnesses of quantum entanglement. We conclude by relating the relative C-numerical range to problems of constrained quantum optimisation, for which we also give Lagrange-type gradient flow algorithms.Comment: update relating to math-ph/070200

    Justice at Sea: Fishers’ politics and marine conservation in coastal Odisha, India

    Get PDF
    This is a paper about the politics of fishing rights in and around the Gahirmatha marine sanctuary in coastal Odisha, in eastern India. Claims to the resources of this sanctuary are politicised through the creation of a particularly damaging narrative by influential Odiya environmental actors about Bengalis, as illegal immigrants who have hurt the ecosystem through their fishing practices. Anchored within a theoretical framework of justice as recognition, the paper considers the making of a regional Odiya environmentalism that is, potentially, deeply exclusionary. It details how an argument about ‘illegal Bengalis’ depriving ‘indigenous Odiyas’ of their legitimate ‘traditional fishing rights’ derives from particular notions of indigeneity and territory. But the paper also shows that such environmentalism is tenuous, and fits uneasily with the everyday social landscape of fishing in coastal Odisha. It concludes that a wider class conflict between small fishers and the state over a sanctuary sets the context in which questions about legitimate resource rights are raised, sometimes with important effects, like when out at sea

    Topological Quantum Glassiness

    Full text link
    Quantum tunneling often allows pathways to relaxation past energy barriers which are otherwise hard to overcome classically at low temperatures. However, this is not always the case. In this paper we provide simple exactly solvable examples where the barriers each system encounters on its approach to lower and lower energy states become increasingly large and eventually scale with the system size. If the environment couples locally to the physical degrees of freedom in the system, tunnelling under large barriers requires processes whose order in perturbation theory is proportional to the width of the barrier. This results in quantum relaxation rates that are exponentially suppressed in system size: For these quantum systems, no physical bath can provide a mechanism for relaxation that is not dynamically arrested at low temperatures. The examples discussed here are drawn from three dimensional generalizations of Kitaev's toric code, originally devised in the context of topological quantum computing. They are devoid of any local order parameters or symmetry breaking and are thus examples of topological quantum glasses. We construct systems that have slow dynamics similar to either strong or fragile glasses. The example with fragile-like relaxation is interesting in that the topological defects are neither open strings or regular open membranes, but fractal objects with dimension d∗=ln3/ln2d^* = ln 3/ ln 2.Comment: (18 pages, 4 figures, v2: typos and updated figure); Philosophical Magazine (2011

    Black Stork Down: Military Discourses in Bird Conservation in Malta

    Get PDF
    Tensions between Maltese hunters and bird conservation NGOs have intensified over the past decade. Conservation NGOs have become frustrated with the Maltese State for conceding to the hunter lobby and negotiating derogations from the European Union’s Bird Directive. Some NGOs have recently started to organize complex field-operations where volunteers are trained to patrol the landscape, operate drones and other surveillance technologies, detect illegalities, and lead police teams to arrest poachers. We describe the sophisticated military metaphors which conservation NGOs have developed to describe, guide and legitimize their efforts to the Maltese public and their fee-paying members. We also discuss why such groups might be inclined to adopt these metaphors. Finally, we suggest that anthropological studies of discourse could help understand delicate contexts such as this where conservation NGOs, hunting associations and the State have ended in political deadlock

    Differences in osmotolerance in freshwater and brackish water populations of Theodoxus fluviatilis (Gastropoda: Neritidae) are associated with differential protein expression

    Get PDF
    The euryhaline gastropod Theodoxus fluviatilis is found in northern Germany in freshwater or in brackish water habitats in the Baltic Sea. Previous studies have revealed that individuals from both habitats are not distinguishable by morphological characters or by sequence comparison of DNA encoding 16S RNA or cytochrome C. As reported in this study, animals collected in the two habitats differ substantially in their physiological ability to adapt to different salinities. Comparison of accumulation rates of ninhydrin-positive substances (NPS) in foot muscle upon transfer of animals to higher medium salinities revealed that brackish water animals were perfectly able to mobilize NPS, while freshwater animals had only limited ability to do so. In an attempt to explore whether this difference in physiology may be caused by genetic differentiation, we compared protein expression patterns of soluble foot muscle proteins using 2D gel electrophoresis and silver staining. Of the 40 consistently detected protein spots, 27 showed similar levels in protein expression in animals collected from freshwater or brackish water habitats, respectively. In 12 spots, however, protein concentration was higher in brackish water than in freshwater animals. In four of these spots, expression levels followed increases or decreases in medium salinities. In a different set of 4 of these 12 spots, protein levels were always higher in brackish water as compared to freshwater animals, regardless of their physiological situation (14 days in artificial pond water or in medium with a salinity of 16‰). The remaining 4 of the 12 spots had complex expression patterns. Protein levels of the remaining single spot were generally higher in freshwater animals than in brackish water animals. These expression patterns may indicate that freshwater and brackish water animals of T. fluviatilis belong to different locally adapted populations with subtle genetic differentiation

    The Emergence of Consensus: a primer

    Get PDF
    The origin of population-scale coordination has puzzled philosophers and scientists for centuries. Recently, game theory, evolutionary approaches and complex systems science have provided quantitative insights on the mechanisms of social consensus. This paper overviews the main dimensions over which the debate has unfolded and discusses some representative results, with a focus on those situations in which consensus emerges `spontaneously' in absence of centralised institutions. Covered topics include the macroscopic consequences of the different microscopic rules of behavioural contagion, the role of social networks, and the mechanisms that prevent the formation of a consensus or alter it after it has emerged. Special attention is devoted to the recent wave of experiments on the emergence of consensus in social systems

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region
    • 

    corecore