1,444 research outputs found
The Suprafroth (Superconducting Froth)
The structure and dynamics of froths have been subjects of intense interest
due to the desire to understand the behaviour of complex systems where
topological intricacy prohibits exact evaluation of the ground state. The
dynamics of a traditional froth involves drainage and drying in the cell
boundaries, thus it is irreversible. We report a new member to the froths
family: suprafroth, in which the cell boundaries are superconducting and the
cell interior is normal phase. Despite very different microscopic origin,
topological analysis of the structure of the suprafroth shows that statistical
von Neumann and Lewis laws apply. Furthermore, for the first time in the
analysis of froths there is a global measurable property, the magnetic moment,
which can be directly related to the suprafroth structure. We propose that this
suprafroth is a new, model system for the analysis of the complex physics of
two-dimensional froths
The Significance of the -Numerical Range and the Local -Numerical Range in Quantum Control and Quantum Information
This paper shows how C-numerical-range related new strucures may arise from
practical problems in quantum control--and vice versa, how an understanding of
these structures helps to tackle hot topics in quantum information.
We start out with an overview on the role of C-numerical ranges in current
research problems in quantum theory: the quantum mechanical task of maximising
the projection of a point on the unitary orbit of an initial state onto a
target state C relates to the C-numerical radius of A via maximising the trace
function |\tr \{C^\dagger UAU^\dagger\}|. In quantum control of n qubits one
may be interested (i) in having U\in SU(2^n) for the entire dynamics, or (ii)
in restricting the dynamics to {\em local} operations on each qubit, i.e. to
the n-fold tensor product SU(2)\otimes SU(2)\otimes >...\otimes SU(2).
Interestingly, the latter then leads to a novel entity, the {\em local}
C-numerical range W_{\rm loc}(C,A), whose intricate geometry is neither
star-shaped nor simply connected in contrast to the conventional C-numerical
range. This is shown in the accompanying paper (math-ph/0702005).
We present novel applications of the C-numerical range in quantum control
assisted by gradient flows on the local unitary group: (1) they serve as
powerful tools for deciding whether a quantum interaction can be inverted in
time (in a sense generalising Hahn's famous spin echo); (2) they allow for
optimising witnesses of quantum entanglement. We conclude by relating the
relative C-numerical range to problems of constrained quantum optimisation, for
which we also give Lagrange-type gradient flow algorithms.Comment: update relating to math-ph/070200
Justice at Sea: Fishersâ politics and marine conservation in coastal Odisha, India
This is a paper about the politics of fishing rights in and around the Gahirmatha marine sanctuary in coastal Odisha, in eastern India. Claims to the resources of this sanctuary are politicised through the creation of a particularly damaging narrative by influential Odiya environmental actors about Bengalis, as illegal immigrants who have hurt the ecosystem through their fishing practices. Anchored within a theoretical framework of justice as recognition, the paper considers the making of a regional Odiya environmentalism that is, potentially, deeply exclusionary. It details how an argument about âillegal Bengalisâ depriving âindigenous Odiyasâ of their legitimate âtraditional fishing rightsâ derives from particular notions of indigeneity and territory. But the paper also shows that such environmentalism is tenuous, and fits uneasily with the everyday social landscape of fishing in coastal Odisha. It concludes that a wider class conflict between small fishers and the state over a sanctuary sets the context in which questions about legitimate resource rights are raised, sometimes with important effects, like when out at sea
Topological Quantum Glassiness
Quantum tunneling often allows pathways to relaxation past energy barriers
which are otherwise hard to overcome classically at low temperatures. However,
this is not always the case. In this paper we provide simple exactly solvable
examples where the barriers each system encounters on its approach to lower and
lower energy states become increasingly large and eventually scale with the
system size. If the environment couples locally to the physical degrees of
freedom in the system, tunnelling under large barriers requires processes whose
order in perturbation theory is proportional to the width of the barrier. This
results in quantum relaxation rates that are exponentially suppressed in system
size: For these quantum systems, no physical bath can provide a mechanism for
relaxation that is not dynamically arrested at low temperatures. The examples
discussed here are drawn from three dimensional generalizations of Kitaev's
toric code, originally devised in the context of topological quantum computing.
They are devoid of any local order parameters or symmetry breaking and are thus
examples of topological quantum glasses. We construct systems that have slow
dynamics similar to either strong or fragile glasses. The example with
fragile-like relaxation is interesting in that the topological defects are
neither open strings or regular open membranes, but fractal objects with
dimension .Comment: (18 pages, 4 figures, v2: typos and updated figure); Philosophical
Magazine (2011
Black Stork Down: Military Discourses in Bird Conservation in Malta
Tensions between Maltese hunters and bird conservation NGOs have intensified over the past decade. Conservation NGOs have become frustrated with the Maltese State for conceding to the hunter lobby and negotiating derogations from the European Unionâs Bird Directive. Some NGOs have recently started to organize complex field-operations where volunteers are trained to patrol the landscape, operate drones and other surveillance technologies, detect illegalities, and lead police teams to arrest poachers. We describe the sophisticated military metaphors which conservation NGOs have developed to describe, guide and legitimize their efforts to the Maltese public and their fee-paying members. We also discuss why such groups might be inclined to adopt these metaphors. Finally, we suggest that anthropological studies of discourse could help understand delicate contexts such as this where conservation NGOs, hunting associations and the State have ended in political deadlock
Differences in osmotolerance in freshwater and brackish water populations of Theodoxus fluviatilis (Gastropoda: Neritidae) are associated with differential protein expression
The euryhaline gastropod Theodoxus fluviatilis is found in northern Germany in freshwater or in brackish water habitats in the Baltic Sea. Previous studies have revealed that individuals from both habitats are not distinguishable by morphological characters or by sequence comparison of DNA encoding 16S RNA or cytochrome C. As reported in this study, animals collected in the two habitats differ substantially in their physiological ability to adapt to different salinities. Comparison of accumulation rates of ninhydrin-positive substances (NPS) in foot muscle upon transfer of animals to higher medium salinities revealed that brackish water animals were perfectly able to mobilize NPS, while freshwater animals had only limited ability to do so. In an attempt to explore whether this difference in physiology may be caused by genetic differentiation, we compared protein expression patterns of soluble foot muscle proteins using 2D gel electrophoresis and silver staining. Of the 40 consistently detected protein spots, 27 showed similar levels in protein expression in animals collected from freshwater or brackish water habitats, respectively. In 12 spots, however, protein concentration was higher in brackish water than in freshwater animals. In four of these spots, expression levels followed increases or decreases in medium salinities. In a different set of 4 of these 12 spots, protein levels were always higher in brackish water as compared to freshwater animals, regardless of their physiological situation (14 days in artificial pond water or in medium with a salinity of 16â°). The remaining 4 of the 12 spots had complex expression patterns. Protein levels of the remaining single spot were generally higher in freshwater animals than in brackish water animals. These expression patterns may indicate that freshwater and brackish water animals of T. fluviatilis belong to different locally adapted populations with subtle genetic differentiation
The Emergence of Consensus: a primer
The origin of population-scale coordination has puzzled philosophers and scientists for centuries. Recently, game theory, evolutionary approaches and complex systems science have provided quantitative insights on the mechanisms of social consensus. This paper overviews the main dimensions over which the debate has unfolded and discusses some representative results, with a focus on those situations in which consensus emerges `spontaneously' in absence of centralised institutions. Covered topics include the macroscopic consequences of the different microscopic rules of behavioural contagion, the role of social networks, and the mechanisms that prevent the formation of a consensus or alter it after it has emerged. Special attention is devoted to the recent wave of experiments on the emergence of consensus in social systems
Neuronal circuitry for pain processing in the dorsal horn
Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region
Recommended from our members
Space, state-building and the hydraulic mission: crafting the Mozambican State
This article explores the role of large-scale water infrastructure in the formation of states in sub-Saharan Africa. We examine this through a focus on government agents and their shifting hydro-developmental visions of the state in colonial and post-colonial Mozambique. Over time, the focus, underlying principles, and goals of the hydraulic mission shifted, triggered by contextual factors and historical developments within and outside the country. We identify the making of three hydraulic paradigms, fostering different imaginaries of âthe stateâ and social and spatial engineering of the territory: the âEstado Novoâ (1930 - 1974), the socialist post-independence state-space (1974 - 1987) and the neoliberal state (1987 - present). We then conclude by discussing how the shifting discursive justifications for infrastructure projects consolidate different state projects and link these to material re-patterning of hydrosocial territories, showing that whilst promoted as a rupture with the past, emerging projects tend to reaffirm, rather than redistribute, power and water within the country
- âŠ