2,354 research outputs found

    CRX controls retinal expression of the X-linked juvenile retinoschisis (RS1) gene

    Get PDF
    X-linked juvenile retinoschisis is a heritable condition of the retina in males caused by mutations in the RS1 gene. Still, the cellular function and retina-specific expression of RS1 are poorly understood. To address the latter issue, we characterized the minimal promoter driving expression of RS1 in the retina. Binding site prediction, site-directed mutagenesis, and reporter assays suggest an essential role of two nearby cone-rod homeobox (CRX)-responsive elements (CRE) in the proximal −177/+32 RS1 promoter. Chromatin immunoprecipitation associates the RS1 promoter in vivo with CRX, the coactivators CBP, P300, GCN5 and acetylated histone H3. Transgenic Xenopus laevis expressing a green fluorescent protein (GFP) reporter under the control of RS1 promoter sequences show that the −177/+32 fragment drives GFP expression in photoreceptors and bipolar cells. Mutating either of the two conserved CRX binding sites results in strongly decreased RS1 expression. Despite the presence of sequence motifs in the promoter, NRL and NR2E3 appear not to be essential for RS1 expression. Together, our in vitro and in vivo results indicate that two CRE sites in the minimal RS1 promoter region control retinal RS1 expression and establish CRX as a key factor driving this expression

    Two birds with one stone: dual grain-boundary and interface passivation enables >22% efficient inverted methylammonium-free perovskite solar cells

    Get PDF
    Advancing inverted (p–i–n) perovskite solar cells (PSCs) is key to further enhance the power conversion efficiency (PCE) and stability of flexible and perovskite-based tandem photovoltaics. Yet, the presence of defects at grain boundaries and in particular interfacial recombination at the perovskite/electron transporting layer interface induce severe non-radiative recombination losses, limiting the open-circuit voltage (VOC) and fill factor (FF) of PSCs in this architecture. In this work, we introduce a dual passivation strategy using the long chain alkylammonium salt phenethylammonium chloride (PEACl) both as an additive and for surface treatment to simultaneously passivate the grain boundaries and the perovskite/C60 interface. Using [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) as a hole transporting layer and a methylammonium (MA)-free Cs0.18FA0.82PbI3 perovskite absorber with a bandgap of ∼1.57 eV, prolonged charge carrier lifetime and an on average 63 meV enhanced internal quasi-Fermi level splitting are achieved upon dual passivation compared to reference p–i–n PSCs. Thereby, we achieve one of the highest PCEs for p–i–n PSCs of 22.7% (stabilized at 22.3%) by advancing simultaneously the VOC and FF up to 1.162 V and 83.2%, respectively. Using a variety of experimental techniques, we attribute the positive effects to the formation of a heterogeneous 2D Ruddlesden–Popper (PEA)2(Cs1−xFAx)n−1Pbn(I1−yCly)3n+1 phase at the grain boundaries and surface of the perovskite films. At the same time, the activation energy for ion migration is significantly increased, resulting in enhanced stability of the PSCs under light, humidity, and thermal stress. The presented dual passivation strategy highlights the importance of defect management both in the grain boundaries and the surface of the perovskite absorber layer using a proper passivation material to achieve both highly efficient and stable inverted p–i–n PSCs

    Superior effect of forceful compared with standard traction mobilizations in hip disability?

    Get PDF
    The objective of this study was to compare the effectiveness of two compiled physiotherapy programs: one including forceful traction mobilizations, the other including traction with unknown force, in patients with hip disability according to ICF (the International Classification of Functioning, Disability and Health, 2001; WHO), using a block randomized, controlled trial with two parallel treatment groups in a regular private outpatient physiotherapy practice. In the experimental group (E; n = 10) and control group (C; n = 9), the mean (±SD) age for all participants was 59 ± 12 years. They were recruited from outpatient physiotherapy clinics, had persistent pain located at the hip joint for >8 weeks and hip hypomobility. Both groups received exercise, information and manual traction mobilization. In E, the traction force was progressed to 800 N, whereas in C it was unknown. Major outcome measure was the median total change score ≥20 points or ≥50% of the disease- and joint-specific Hip disability and Osteoarthritis Outcome Score (HOOS), compiled of Pain, Stiffness, Function and Hip-related quality of life (ranging 0–100). The mean (range) treatments received were 13 (7–16) over 5–12 weeks and 20 (18–24) over 12 weeks for E and C, respectively. The experimental group showed superior clinical post-treatment effect on HOOS (≥20 points), in six of 10 participants compared with none of nine in the control group (p = 0.011). The effect size was 1.1. The results suggest that a compiled physiotherapy program including forceful traction mobilizations are short-term effective in reducing self-rated hip disability in primary healthcare. The long-term effect is to be documented

    Highly selective, reversible water activation by P,N-cooperativity in pyridyl-functionalized phosphinines

    Get PDF
    Tetrapyridyl-functionalized phosphinines were prepared and structurally characterized. The donor-functionalized aromatic phosphorus heterocycles react highly selectively and even reversibly with water. Calculations reveal P,N-cooperativity for this process, with the flanking pyridyl groups serving to kinetically enhance the formal oxidative addition process of H2O to the low-coordinate phosphorus atom via H-bonding. Subsequent tautomerization forms 1,2-dihydrophosphinine derivatives, which can be quantitatively converted back to the phosphinine by applying vacuum, even at room temperature. This process can be repeated numerous times, without any sign of decomposition of the phosphinine. In the presence of CuI·SMe2, dimeric species of the type ([Cu2I2(phosphinine)]2) are formed, in which each phosphorus atom shows the less common μ2-bridging 2e−-lone-pair-donation to two Cu(i)-centres. Our results demonstrate that fully unsaturated phosphorus heterocycles, containing reactive P = C double bonds, are interesting candidates for the activation of E-H bonds, while the aromaticity of such compounds plays an appreciable role in the reversibility of the reaction, supported by NICS calculations

    Measurement of event shapes in deep inelastic scattering at HERA

    Get PDF
    Inclusive event-shape variables have been measured in the current region of the Breit frame for neutral current deep inelastic ep scattering using an integrated luminosity of 45.0 pb^-1 collected with the ZEUS detector at HERA. The variables studied included thrust, jet broadening and invariant jet mass. The kinematic range covered was 10 < Q^2 < 20,480 GeV^2 and 6.10^-4 < x < 0.6, where Q^2 is the virtuality of the exchanged boson and x is the Bjorken variable. The Q dependence of the shape variables has been used in conjunction with NLO perturbative calculations and the Dokshitzer-Webber non-perturbative corrections (`power corrections') to investigate the validity of this approach.Comment: 7+25 pages, 6 figure

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30

    Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    Get PDF
    Results of a search for H → τ τ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV respectively. All combinations of leptonic (τ → `νν¯ with ` = e, µ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalised to the Standard Model expectation, of µ = 1.43 +0.43 −0.37 is consistent with the predicted Yukawa coupling strength in the Standard Model

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore