319 research outputs found

    3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum

    Full text link
    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. We employed STEREO/COR1 data obtained during a deep minimum of solar activity in February 2008 (Carrington rotation CR 2066) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 Rsun using a tomography method. With this, we qualitatively deduced structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in the 195 A band obtained by tomography for the same CR. A global 3D MHD model of the solar corona was used to relate the reconstructed 3D density and emissivity to open/closed magnetic field structures. We show that the density maximum locations can serve as an indicator of current sheet position, while the locations of the density gradient maximum can be a reliable indicator of coronal hole boundaries. We find that the magnetic field configuration during CR 2066 has a tendency to become radially open at heliocentric distances greater than 2.5 Rsun. We also find that the potential field model with a fixed source surface (PFSS) is inconsistent with the boundaries between the regions with open and closed magnetic field structures. This indicates that the assumption of the potential nature of the coronal global magnetic field is not satisfied even during the deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.Comment: Published in "Solar Physics

    Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 346 (2007): 76-86, doi:10.1016/j.jembe.2007.03.007.Experiments were carried out to investigate the effects of nutrients, salinity, pH and light:dark cycle on growth rate and production of reactive oxygen species (ROS) by Chattonella marina, a harmful algal bloom (HAB) species that often causes fish kills. Different nitrogen forms (organic-N and inorganic-N), N:P ratios, light:dark cycles and salinity significantly influenced algal growth, but not ROS production. However, iron concentration and pH significantly affected both growth and ROS production in C. marina. KCN (an inhibitor of mitochondrial respiration) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (an inhibitor of photosynthesis) had no significant effects on ROS production. Vitamin K3 (a plasma membrane electron shuttle) enhanced ROS production while its antagonist, dicumarol, decreased ROS production. Taken together, our results suggest that ROS production by C. marina is related to a plasma membrane enzyme system regulated by iron availability but is independent of growth, photosynthesis, availability of macronutrients, salinity and irradiance.The work described in this paper was supported by a CERG grant from the University Grants Committee of the Hong Kong Special Administrative Region, China to RSSW (Project No. 9040864). Support for DMA is provided by U.S. National Science Foundation grant # OCE-0136861

    A median fin derived from the lateral plate mesoderm and the origin of paired fins

    Get PDF
    The development of paired appendages was a key innovation during evolution and facilitated the aquatic to terrestrial transition of vertebrates. Largely derived from the lateral plate mesoderm (LPM), one hypothesis for the evolution of paired fins invokes derivation from unpaired median fins via a pair of lateral fin folds located between pectoral and pelvic fin territories1. Whilst unpaired and paired fins exhibit similar structural and molecular characteristics, no definitive evidence exists for paired lateral fin folds in larvae or adults of any extant or extinct species. As unpaired fin core components are regarded as exclusively derived from paraxial mesoderm, any transition presumes both co-option of a fin developmental programme to the LPM and bilateral duplication2. Here, we identify that the larval zebrafish unpaired pre-anal fin fold (PAFF) is derived from the LPM and thus may represent a developmental intermediate between median and paired fins. We trace the contribution of LPM to the PAFF in both cyclostomes and gnathostomes, supporting the notion that this is an ancient trait of vertebrates. Finally, we observe that the PAFF can be bifurcated by increasing bone morphogenetic protein signalling, generating LPM-derived paired fin folds. Our work provides evidence that lateral fin folds may have existed as embryonic anlage for elaboration to paired fins

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe
    corecore