514 research outputs found

    Contention Resolution with Heterogeneous Job Sizes

    Full text link
    Abstract. We study the problem of contention resolution for differentsized jobs on a simple channel. When a job makes a run attempt, it learns only whether the attempt succeeded or failed. We first analyze binary exponential backoff, and show that it achieves a makespan of V2 Θ( logn) with high probability, where V is the total work of all n contending jobs. This bound is significantly larger than when jobs are constant sized. A variant of exponential backoff, however, achieves makespan O(V logV) with high probability. Finally, we introduce a new protocol, size-hashed backoff, specifically designed for jobs of multiple sizes that achieves makespan O(V log 3 logV). The error probability of the first two bounds is polynomially small in n and the latter is polynomially small in logV.

    Stellar Inversion Techniques

    Full text link
    Stellar seismic inversions have proved to be a powerful technique for probing the internal structure of stars, and paving the way for a better understanding of the underlying physics by revealing some of the shortcomings in current stellar models. In this lecture, we provide an introduction to this topic by explaining kernel-based inversion techniques. Specifically, we explain how various kernels are obtained from the pulsation equations, and describe inversion techniques such as the Regularised Least-Squares (RLS) and Optimally Localised Averages (OLA) methods.Comment: 20 pages, 8 figures. Lecture presented at the IVth Azores International Advanced School in Space Sciences on "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds" (arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in July 201

    Slow-blue nuclear hypervariables in PanSTARRS-1

    Get PDF
    We discuss 76 large amplitude transients (Δm > 1.5) occurring in the nuclei of galaxies, nearly all with no previously known active galactic nucleus (AGN). They have been discovered as part of the Pan-STARRS1 (PS1) 3π survey, by comparison with Sloan Digital Sky Survey (SDSS) photometry a decade earlier, and then monitored with the Liverpool Telescope, and studied spectroscopically with the William Herschel Telescope (WHT). Based on colours, light-curve shape, and spectra, these transients fall into four groups. A few are misclassified stars or objects of unknown type. Some are red/fast transients and are known or likely nuclear supernovae. A few are either radio sources or erratic variables and so likely blazars. However the majority (∼66 per cent) are blue and evolve slowly, on a time-scale of years. Spectroscopy shows them to be AGN at z ∼ 0.3 − 1.4, which must have brightened since the SDSS photometry by around an order of magnitude. It is likely that these objects were in fact AGN a decade ago, but too weak to be recognized by SDSS; they could then be classed as ‘hypervariable’ AGN. By searching the SDSS Stripe 82 quasar database, we find 15 similar objects. We discuss several possible explanations for these slow-blue hypervariables – (i) unusually luminous tidal disruption events; (ii) extinction events; (iii) changes in accretion state; and (iv) large amplitude microlensing by stars in foreground galaxies. A mixture of explanations (iii) and (iv) seems most likely. Both hold promise of considerable new insight into the AGN phenomenon

    Selection of Burst-like Transients and Stochastic Variables Using Multi-band Image Differencing in the PAN-STARRS1 Medium-deep Survey

    Get PDF
    We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g P1, r P1, i P1, and z P1. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and an analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to define a robust photometric sample of 1233 AGNs and 812 SNe. With these two samples, we characterize their variability and host galaxy properties, and identify simple photometric priors that would enable their real-time identification in future wide-field synoptic survey

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio

    Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS

    Get PDF
    The chi_b(nP) quarkonium states are produced in proton-proton collisions at the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS detector. Using a data sample corresponding to an integrated luminosity of 4.4 fb^-1, these states are reconstructed through their radiative decays to Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes. This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table, corrected author list, matches final version in Physical Review Letter

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore