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LETTER

Quantifying the road-effect zone for a critically endangered
primate

1 INTRODUCTION

The 21st century has experienced an unprecedented expan-
sion in infrastructure development, with 97% of Earth’s ter-
restrial surface no longer qualifying as intact (Plumptre
et al., 2021). Since 2000, 12 million km of paved roads have
been laid down globally, and an estimated $33 trillion USD
have been earmarked for the construction of an additional
25 million km by 2050 (Dulac, 2013). The majority of the
global road network comprises roads in rural areas, with a
few exceptions in highly urbanized countries such as Bel-
gium (Coffin et al., 2021). The anticipated expansion of
the global road network would place significant additional
pressures on species diversity (Alamgir et al., 2019; Sloan
et al., 2018). A better understanding of the extent to which
roads impact species of conservation concern is therefore
a priority if developers are to effectively mitigate the eco-
logical effects of roads, which extend beyond their physical
footprints (Benitez-Lopez et al., 2010).
One approach to measuring the ecological effects of

roads is to quantify the distance up to which the density of
a species is reduced, referred to as the road-effect zone, or
REZ (Peaden et al., 2016; Semlitsch et al., 2007). REZs can
be used by development planners and conservation prac-
titioners to estimate the area where roads impact a par-
ticular species (Eigenbrod et al., 2009). This is important
because some lenders such as the International Finance
Corporation (IFC) have established a best practice stan-
dard (IFC PS6) for mitigation of impacts on biodiversity,
to which the IFC’s clients are required to adhere (IFC,
2012). At the heart of these recommendations is the “mit-
igation hierarchy”, a tool for development planners and
other stakeholders to limit the negative impacts of projects
on biodiversity and ecosystem services (Ekstrom et al.,
2015; IFC, 2012). It encompasses a hierarchy of strategies:
(1) avoiding adverse impacts before they occur; (2) mini-
mizing the severity of impacts that could not be avoided;
(3) restoring habitats and/or species following impacts;
and (4) offsetting residual impacts that remain. Not all
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mitigation actions are sequential, for example, develop-
ers can start offsets at any time, and restoration may take
place before minimization measures are effective. How-
ever, the first two strategies should be prioritized over the
subsequent ones, as they often are more effective in max-
imizing the environmental sustainability of development
projects (Ekstrom et al., 2015). Avoidance of impacts can be
achieved in three major ways: through design (e.g., using
existing infrastructure wherever possible to reduce addi-
tional road construction); through scheduling of activi-
ties (e.g., adapting the timing of construction/operational
activities to avoid disturbing species); and through site
selection (e.g., relocating projects away from critical habi-
tats). REZs can inform avoidance through site selection
by advising development planners on where roads should
avoid critical habitats. However, if complete avoidance of
development is not possible, REZs provide an estimate
about the area where strategies lower down the mitiga-
tion hierarchy, such as “Minimization,” need to be effec-
tive. Despite a growing abundance of literature on species’
responses to linear infrastructure, studies that explicitly
establish REZs are rare, especially in tropical areas which
harbor high biodiversity and are undergoing rapid infras-
tructure development (Laurance et al., 2015). Moreover,
variations in REZs for major andminor road categories are
rarely quantified (Collinson et al., 2019) even though differ-
ent road properties impact wildlife differently.
REZs are variable across taxonomic groups, ranging

between 35 m for salamanders (Semlitsch et al., 2007), to
2.8 km for woodland birds (Reijnen et al., 1995) (Table
S1), highlighting the importance of generating species-
specific estimates. One taxonomic group for which there
are no published REZs are nonhuman primates (hereafter
primates). Approximately 60% of all primates are threat-
ened with extinction and 75% have declining populations
(Estrada et al., 2017), partly due to large-scale infrastruc-
ture development (Arcus Foundation, 2018). Roads are
considered a major threat to primates through vehicle-
induced mortality (Hetman et al., 2019); by providing
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easier access for hunters; and by degrading adjacent habi-
tat through extractive industries (Strindberg et al., 2018).
Furthermore, increased proximity between humans and
primates might elevate disease transmission risk which
can lead to further population declines. However, if pri-
mate densities are lower in proximity to roads this might
attenuate disease transmission (Cameron et al., 2016;
Strindberg et al., 2018).
The social, economic, and ecological values of great apes

are recognized by the IFC, with any area where great
apes occur likely considered as critical habitat (IFC, 2019).
Thus the IFC’s Guidance Note 6 (GN73) states that the
IUCNSpecies Survival Commission (SSC) Primate Special-
ist Group (PSG) Section on Great Apes (SGA), (IUCN/SSC
PSG SGA), must be consulted when developments are
planned in areas where great apes potentially occur and
in the development of mitigation strategies. The western
chimpanzee (Pan troglodytes verus), a subspecies of chim-
panzeewhichwas oncewidespread acrossWest Africa, has
declined by 80% in the last 20 years and is currently clas-
sified as critically endangered (IUCN, 2020; Kühl et al.,
2017). The human population in West Africa is growing
rapidly (Table S2, Bradshaw & Brook, 2014) and chim-
panzees face mounting pressure from the expansion of set-
tlements and infrastructure (Humle et al., 2016). Four of
Africa’s 33 development corridors—designed to boost the
export of natural resources and agricultural production—
will cut through the habitat of western chimpanzees
(Heinicke et al., 2019; Laurance et al., 2015). To avoid the
negative impacts of such development, it is critical to pro-
vide conservation practitioners and development planners
with clear information on the distance up to which chim-
panzee abundance might be reduced. For instance, REZs
could help the IUCN/SSC PSG SGA determine the pres-
ence of great apes within the “project’s area of influence”
(IFC, 2019) by pointing researchers to the area where great
ape presence should be investigated. We address this criti-
cal knowledge gap to provide the first range-wide estima-
tion of REZ for a primate taxon, the western chimpanzee
(Figure 1). We use ecological threshold analysis to provide
a robust estimation of the area that is impacted by roads
and highlight how REZs differ between major and minor
road categories.

2 METHODS

2.1 Road data

Road data for West Africa were obtained from Open-
StreetMap (OSM) and accessed by Overpass Turbo (https:
//overpass-turbo.eu/). OSM is an open-access database

storing regularly updated information on the location,
size, length, and function of the world’s road network
(OpenStreetMap, 2015). The data are sourced from indi-
vidual or organization-level contributors, through survey-
ing stretches of road with GPS or tracing over licensed
satellite imagery. The global coverage of OSM transport
network is more up-to-date and more accurate than other
open datasets such as gRoads (CIESIN, 2010). Eleven road
categories were obtained, which were grouped into major
and minor roads (Figure 1) based on their size and prop-
erties, such as whether or not they were paved (Table S3).
Railway lines were excluded due to their low number and
high overlap with major roads.

2.2 Chimpanzee density distribution
and REZs

We used a modeled western chimpanzee density distribu-
tion (Figure 1) from Heinicke et al. (2019), accessed via the
IUCN SSC A.P.E.S. database (http://apesportal.eva.mpg.
de), which is available at a spatial resolution of half a
minute (ca. 0.9 km); with estimated density values rang-
ing from < 0.01 to 6.3 individuals/km2.
To quantify the REZ, major roads for all eight countries

intersecting the geographic range of western chimpanzees
(Ghana, Guinea, Guinea Bissau, Ivory Coast, Liberia,Mali,
Senegal, and Sierra Leone; Figure 1) were overlaid with
the range-wide chimpanzee density data. Bands of 1 km
width were added to both sides of the physical footprint
of the roads—defined as 10 m for major and 5 m for
minor roads, respectively OpenStreetMap, 2015)—using
the “Buffer” tool in ArcGIS version 10.5.1 (ESRI, 2019). The
values of the raster cells whose center fell into the bands
were extracted and averaged to serve as an estimation of
mean chimpanzee density per band. Each band was then
moved consecutively 1 km further away until all raster cells
had been sampled. The lower limit of bandwidthwas 1 km,
which corresponds to the resolution of the chimpanzee
density data (∼1 km2).
Consistent with studies on birds (Reijnen et al., 1995),

reptiles (Peaden et al., 2016), and amphibians (Semlitsch
et al., 2007), the REZ was defined as the distance beyond
which chimpanzee density did not increase. We used eco-
logical threshold analysis as per Eigenbrod et al. (2009) and
Muggeo (2008) to determine the exact position of the REZ.
To do this, we fitted piecewise regression models requiring
initial estimates of possible breakpoints, which are used by
themodel to compute “true” breakpoints and provide con-
fidence intervals calculated as:

𝜓̂ ± 𝑧𝛼∕2𝑆𝐸
(
𝜓̂
)

https://overpass-turbo.eu/
https://overpass-turbo.eu/
http://apesportal.eva.mpg.de
http://apesportal.eva.mpg.de
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F IGURE 1 (a) western chimpanzee (Pan troglodytes verus) range states and modelled density (number of individuals per km2) across its
present geographic range in West Africa; (b) distribution of major and minor roads across West Africa; and (c) examples of road widening
projects and western chimpanzees crossing roads in Bossou, Guinea (Photograph credits: author KJH). West African countries (as defined by
the United Nations) are labelled using ISO codes as follows: BF, Burkina Faso; BJ, Benin; CI, Ivory Coast; CV, Cape Verde; GH, Ghana; GM,
Gambia; GW, Guinea Bissau; GN, Guinea; LR, Liberia; MR, Mauritania; ML, Mali; NE, Niger; NG, Nigeria; SL, Sierra Leone; SN, Senegal; TG,
Togo
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where 𝜓̂ is the breakpoint estimated by the model, 𝑧𝛼∕2 is
the quantile of the standardNormal, SE(𝜓̂) comes from the
Delta method for the ratio 𝛾̂

𝛽2
where 𝛽2 is the difference in

slope between the estimated and “true” regression pieces,
and 𝛾̂ is the gap between the initial and true breakpoints.
All breakpoints which could be visually identified served
as initial estimates (Figure S1).
For minor roads, we only included the stretches that

extend beyond the REZ of major roads as identified above.
This approach ensured that estimates of REZs for minor
roads were not confounded by the influence of major
roads.

3 RESULTS

3.1 REZ estimations for western
chimpanzees

Across the present geographic range of the western chim-
panzee, covering ∼528,010 km2 (IUCN, 2018), there are
41,925 km of major roads, with 14.5% of their range located
within 1 km of a major road (Figure 2A). Average density
of the western chimpanzee first peaked at 17 km from the
closest major road (0.1 individuals per km2). The ecologi-
cal threshold analysis identified the corresponding break-
point at 17.2 km (95% CI [15.8–18.6 km]). Accordingly, the
REZ of major roads for the western chimpanzee is esti-
mated to be between 15.8 and 18.6 km (Figure 2A). The area
within the REZ across the present geographic range of the
western chimpanzee is 472,797 km2 (± 95% CI [462,430–
483,164 km2]), which leaves 55,213 km2, or 10.4% outside
the impact of major roads (Figure 3; Table S4).
There are a total of 206,110 km ofminor roads within the

chimpanzee range, with 41.7% of their distribution located
within 1 km of a minor road. Average chimpanzee density
values first peaked at 5 km from the closest minor road
(0.1 individuals per km2). The ecological threshold analy-
sis identified the corresponding breakpoint at 5.4 km (95%
CI [4.9–5.8 km]). Therefore, the REZ of minor roads for
the western chimpanzee is estimated to be between 4.9
and 5.8 km (Figure 2B). The area within the REZ across
the present geographic range of the western chimpanzee is
437,809 km2 (± 95%CI [427,113-448,505 km2]) which leaves
90,201 km2, or 17.1% of the geographic range of western
chimpanzees outside of the impact of minor roads (Fig-
ure 3; Table S4).
The combined area of the REZs is 505,306 km2 (± 95%

CI [500,549–510,063 km2]), which leaves 22,711 km2 (± 95%
CI [17,954–27,468 km2]), or 4.3% of the present geographic
range of western chimpanzees unimpacted by any road
(Figure 3; Table S4).

4 DISCUSSION

REZ estimations support the development of evidence-
based measures to avoid and/or minimize impacts on
wildlife, without which future road expansion will lead
to catastrophic biodiversity declines (Alamgir et al., 2019;
Sloan et al., 2018). Our analysis shows that the western
chimpanzee is negatively impacted by roads across 95.7%
of its present geographic range, with the REZ of major
roads estimated as between 15.8 and 18.6 km, which is
three times wider than that of minor roads. These impacts
are compounded by planned development corridors which
will be constructed in the savannah and rainforest regions
in Africa, home to many threatened megafauna (Laurance
et al., 2015).
Although chimpanzees are documented to be ecologi-

cally flexible (Hockings et al., 2015), their slow life histo-
ries make them sensitive to many human activities. This
might explain why the REZ for this subspecies is more
than three times greater than the 5 km average reported for
other mammal species (Benitez-Lopez et al., 2010; Table
S1). There are several explanations for why roads reduce
the density of western chimpanzees. First, roads open up
unexploited areas to large-scale extractive industry such
as mining and agriculture which replace the forests that
chimpanzees need to meet their basic ecological require-
ments. Second, roads can restrict the movements of chim-
panzees, with busy major roads leading to higher frag-
mentation of populations and genetic isolation (Knight
et al., 2016). Third, hunting is a persistent threat for most
large-bodied mammals including the western chimpanzee
(Brodie et al., 2021; IUCN, 2020), with roads used as access
points from which hunters target adults for meat and/or
infants to sell (Arcus Foundation, 2018).
The considerable extent to which western chimpanzees

are impacted by roads should facilitate discussion between
stakeholders about avoidance and other mitigation strate-
gies to ensure new road projects adhere to best practices
as defined by the IFC. However, the complete avoidance
of important western chimpanzee habitat is likely to be
a challenge, given the subspecies’ restricted distribution.
When avoidance is not possible, resources will need to
be prioritized for the implementation of strategies lower
down the mitigation hierarchy such as minimizing the
severity of residual impacts (Ekstrom et al., 2015). Specif-
ically, the implementation of long-term, large-scale mon-
itoring of legal and illegal resource extraction, including
logging,mining, andhunting along the length of the road is
critical. This would include long-term funding for patrols,
which benefit protected species includingwestern lowland
gorillas (Gorilla gorilla gorilla) and central chimpanzees
(Pan troglodytes troglodytes) in Western Equatorial Africa
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(a)

(b)

F IGURE 2 Estimated road-effect zone (REZ) of (a) major and (b) minor roads for the western chimpanzee (Pan troglodytes verus). REZ
quantified by the ecological threshold analysis are highlighted by the solid blue line. The dashed lines show the 95% confidence interval of the
breakpoint estimate. Orange points indicate the mean chimpanzee density at each 1 km wide band, where 0 km is the physical footprint of the
road (10 m for major and 5 m for minor roads, respectively). The percentage of the geographic area of the chimpanzee distribution within
each band is indicated by gray bars. Error bars represent the standard error of average chimpanzee density. Please note that minor roads were
considered only when they were beyond the REZ identified for major roads, as detailed in the methods

(Strindberg et al., 2018). Additional interventions proposed
to minimize the impacts of roads on primates include the
installation of roadblocks to inspect vehicles for illegally
acquired forest resources; the removal of snares to reduce
the trapping of great apes; and to reduce vehicle speed, the
installation of road bumps, implementation of speed limits

with clear signage, and the reduction of roadwidth (Junker
et al., 2017). The establishment of secondary roads within
the REZ should also be restricted to avoid an increase in
human activities. However, the effectiveness of many of
these interventions has not yet been evaluated. Develop-
ers should consult the Conservation Evidence database
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F IGURE 3 The road-effect zones (REZ) of (a) major roads (17.2 km); (b) minor roads (5.4 km); and (c) major and minor roads combined
across the geographic range of the western chimpanzee. Countries are labelled using ISO codes as follows: BF, Burkina Faso; CI, Ivory Coast;
GH, Ghana; GM, Gambia; GW, Guinea Bissau; GN, Guinea; LR, Liberia; ML, Mali; SL, Sierra Leone; SN, Senegal
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(which is continually updated) to ensure the develop-
ment of effectivemitigation strategy is evidence-based, and
that the effectiveness of interventions on chimpanzees and
other wildlife are properly evaluated (Junker et al., 2017). It
isworth noting that commitments to strategies lower down
the mitigation hierarchy often become increasingly chal-
lenging to fulfil (Ekstrom et al., 2015). The financial burden
of long-term minimization efforts can be too high for the
governments of economically developing countries, such
as countries in the western chimpanzee range. Further-
more, the success of offsetting residual impacts on great
ape conservation has proved controversial and should be
an absolute last resort (Kormos et al., 2014).
Similarly, the integrity of protected areas in the vicinity

of transport infrastructuremust be safeguarded, to prevent
legal changes that ease restrictions, shrink their bound-
aries or eliminate their protection entirely. Between 1892
and 2018, an area of 519,857 km2 globally was removed
from protection whilst another 1,659,972 km2 of protected
area was deregulated and exposed to various human activ-
ities (Kroner et al., 2019). We argue that in cases where
the REZs overlap protected areas, it is imperative that
their legal status is maintained through better funding
from developers to support the enforcement of existing
laws, which can help reduce human pressures inside park
boundaries. For instance, Liberia’s oldest protected area,
the Sapo National Park, experienced high levels of human
encroachment partly mediated by the surrounding major
roads. However, in 2018, after Community Watch Teams
and the Forest Development Authority ramped up efforts
to enforce the protection of the park, illegal mining activi-
ties within its borders ceased (Boesch et al., 2020). Finally,
adherence to the mitigation hierarchy, based on REZ val-
ues, could yield positive conservation outcomes for a rich
assemblage of trees and mammals, such as the endan-
gered pygmy hippopotamus (Choeropsis liberiensis) and
Temminck’s red colobus (Piliocolobus badius temminckii),
whose taxonomic diversity positively correlates with chim-
panzee abundance (Junker et al., 2015).
It is worth noting that the road data compiled by

OSM are ∼83% complete. This is particularly evident for
countries with weaker governance and/or poorer internet
access (Barrington & Millard, 2019), and so could under-
estimate the true extent of roads in West Africa. Similarly,
while the modeled western chimpanzee density distribu-
tion allows for large scale estimations of REZs, less than
50% of their geographic range has been surveyed, and con-
siderable data gaps remain, particularly in Mali, Senegal,
and Guinea Bissau (Heinicke et al., 2019; Kühl et al., 2017).
It is important to note that the area of REZs is not always
constant along the length of a road, and spatial and tem-
poral variations exist (Parsons et al., 2020). For example,

disease outbreaks could result in rapid declines of apes
near roads (Strindberg et al., 2018) possibly widening REZs
beyond the distances estimated in this study. Additional
data on chimpanzee densities and road networks (and
associated human activities) coupled with habitat suitabil-
ity analysis, will further strengthen estimates of the REZ
for western chimpanzees. Moreover, country-specific dif-
ferences in REZs might exist and these should be carefully
examined, especially in relation to robust and up-to-date
information on anthropogenic threats. Additional research
should also be carried out to quantify the REZ for differ-
ent species with diverse life history traits to ensure mit-
igation strategies are effective for a range of taxonomic
groups, with intervention strategies evaluated across taxa
(Sutherland et al, 2012). The REZs identified in this study
serve as an important baseline for large-bodied wildlife
inhabiting the tropics. Without mitigating the substan-
tial impact that infrastructure development is having on
the critically endangered western chimpanzee, this charis-
matic and iconic subspecies will be pushed closer to the
brink of extinction.
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