3,299 research outputs found

    Review of existing experimental methods for assessing the outcome of plant food supplementation on immune function

    Get PDF
    Plant food supplements (PFS) have become increasingly popular with respect to their consumption for improving human immune function. Despite this popularity, critical review is lacking regarding the analytical methods used to assess PFS outcome. The suitability of such methods for clinical-based studies remains particularly unclear.We undertook a literature-based review of the methods used to assess PFS outcome in immune function, to identify and assess the relevance of different technologies. Most methods described in this review adequately measured the functions of innate and adaptive immunity, were applicable to both healthy and diseased subjects, and were appropriate for assessing the benefit claims of PFS on immune function. However, the design and reporting quality of studies varied widely across trials, in some cases potentially impacting negatively on the outcomes and interpretations. Several strategies to enhance study robustness and quality were outlined, to improve the validity of the data generated in the field

    Dual-readout Calorimetry

    Full text link
    The RD52 Project at CERN is a pure instrumentation experiment whose goal is to understand the fundamental limitations to hadronic energy resolution, and other aspects of energy measurement, in high energy calorimeters. We have found that dual-readout calorimetry provides heretofore unprecedented information event-by-event for energy resolution, linearity of response, ease and robustness of calibration, fidelity of data, and particle identification, including energy lost to binding energy in nuclear break-up. We believe that hadronic energy resolutions of {\sigma}/E ≈\approx 1 - 2% are within reach for dual-readout calorimeters, enabling for the first time comparable measurement preci- sions on electrons, photons, muons, and quarks (jets). We briefly describe our current progress and near-term future plans. Complete information on all aspects of our work is available at the RD52 website http://highenergy.phys.ttu.edu/dream/.Comment: 10 pages, 10 figures, Snowmass White pape

    Neutron irradiation test on ATLAS MDT chambers

    Get PDF
    Abstract The Monitored Drift Tubes (MDT) chambers of the ATLAS muon spectrometer are crucial for the identification of high-momentum final-state muons, which represent very promising and robust signatures of physics at the LHC. They will operate in a high rate and high background environment and therefore their performances should not significantly degrade for the whole ATLAS data taking. The maximum expected total flux, mainly consisting of neutrons and photons in the MeV range, is of the order of 5 kHz/cm 2 for the barrel MDTs, while at SLHC, with machine working at higher luminosity, fluxes can be 10 times higher. To test detector robustness, a MDT test chamber was exposed to intensive neutron irradiation at the TAPIRO ENEA-Casaccia Research Center facility

    Upgraded Pulsating Heat Pipe Only For Space (U-Phos): Results of the 22nd Rexus Sounding Rocket Campaign

    Get PDF
    A large tube may still behave, to a certain extent, as a capillary in a micro-gravity environment. This very basic concept is here applied to a two-phase passive heat transfer devices in order to obtain a new family of hybrid wickless heat pipes. Indeed, a Loop Thermosyphon, which usually consists of a large tube, closed end to end in a loop, evacuated and partially filled with a working fluid and intrinsically gravity assisted, may become a capillary tube in space condition and turn its thermo-fluidic behavior into a so called Pulsating Heat Pipe (PHP), or better, a Space Pulsating Heat Pipe (SPHP). Since the objective of the present work is to experimentally demonstrate the feasibility of such a hybrid device, a SPHP has been designed, built, instrumented and tested both on ground and microgravity conditions on the 22nd ESA REXUS Sounding Rocket Campaign. Ground tests demonstrate that the device effectively work as a gravity assisted loop thermosyphon, whether the sounding rocket data clearly reveal a change in the thermal hydraulic behavior very similar to the PHP. Since a microgravity period of approximately 120s is not sufficient to reach a pseudo steady state regime, further investigation on a longer term weightless condition is mandatory

    System Test of the ATLAS Muon Spectrometer in the H8 Beam at the CERN SPS

    Get PDF
    An extensive system test of the ATLAS muon spectrometer has been performed in the H8 beam line at the CERN SPS during the last four years. This spectrometer will use pressurized Monitored Drift Tube (MDT) chambers and Cathode Strip Chambers (CSC) for precision tracking, Resistive Plate Chambers (RPCs) for triggering in the barrel and Thin Gap Chambers (TGCs) for triggering in the end-cap region. The test set-up emulates one projective tower of the barrel (six MDT chambers and six RPCs) and one end-cap octant (six MDT chambers, A CSC and three TGCs). The barrel and end-cap stands have also been equipped with optical alignment systems, aiming at a relative positioning of the precision chambers in each tower to 30-40 micrometers. In addition to the performance of the detectors and the alignment scheme, many other systems aspects of the ATLAS muon spectrometer have been tested and validated with this setup, such as the mechanical detector integration and installation, the detector control system, the data acquisition, high level trigger software and off-line event reconstruction. Measurements with muon energies ranging from 20 to 300 GeV have allowed measuring the trigger and tracking performance of this set-up, in a configuration very similar to the final spectrometer. A special bunched muon beam with 25 ns bunch spacing, emulating the LHC bunch structure, has been used to study the timing resolution and bunch identification performance of the trigger chambers. The ATLAS first-level trigger chain has been operated with muon trigger signals for the first time

    U-PHOS Project: Development of a Large Diameter Pulsating Heat Pipe Experiment on board REXUS 22

    Get PDF
    U-PHOS Project aims to analyse and characterise the behaviour of a large diameter Pulsating Heat Pipe (PHP) on board REXUS 22 sounding rocket. A PHP is a passive thermal control device consisting of a serpentine capillary tube, evacuated, partially filled with a working fluid and finally sealed. In this configuration, the liquid and vapour phases are randomly distributed in the form of liquid slugs and vapour plugs. The heat is efficiently transported by means of the self-sustained oscillatory fluid motion driven by the phase change phenomena. On ground conditions, a small diameter is required in order to obtain a confined slug flow regime. In milli-gravity conditions, buoyancy forces become less intense and the PHP diameter may be increased still maintaining the slug/plug flow configuration typical of the PHP operation. Consequently, the PHP heat power capability may be increased too. U-PHOS aims at proving that a Large Diameter PHP effectively works in milli-g conditions by characterizing its thermal response during a sounding rocket flight. The actual PHP tube is made of aluminum (3 mm inner diameter, filled with FC-72), heated at the evaporator by a compact electrical resistance, cooled at the condenser by a Phase Change Material (PCM) embedded in a metallic foam. The tube wall temperatures are recorded by means of Fibre Bragg Grating (FBG) sensors; the local fluid pressure is acquired by means of a pressure transducer. The present work intends to report the actual status of the project, focusing in particular on the experiment improvements with respect to the previous campaign

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon Ό\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, ΌΌ\mu\mu or eΌe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction
    • 

    corecore