174 research outputs found
Differential activation of anti-erythrocyte and anti-DNA autoreactive B lymphocytes by the Yaa mutation
An as-yet-unidentified mutation, Y-linked autoimmune acceleration (Yaa), is responsible for the accelerated development of lupus-like autoimmune syndrome in mice. In view of a possible role for Yaa as a positive regulator of BCR signaling, we have explored whether the expression of the Yaa mutation affects the development and activation of transgenic autoreactive B cells expressing either 4C8 IgM anti-RBC or Sp6 IgM anti-DNA. In this study, we show that the expression of the Yaa mutation induced a lethal form of autoimmune hemolytic anemia in 4C8 transgenic C57BL/6 mice, likely as a result of activation of 4C8 anti-RBC autoreactive B cells early in life. This was further supported, although indirectly, by increased T cell-independent IgM production in spleens of nontransgenic C57BL/6 mice bearing the Yaa mutation. In contrast, Yaa failed to induce activation of Sp6 anti-DNA autoreactive B cells, consistent with a lack of increased IgM anti-DNA production in nontransgenic C57BL/6 Yaa mice. Our results suggest that Yaa can activate autoreactive B cells in a BCR-dependent manner, related to differences in the form and nature of autoantigens
Study protocol for the multicentre cohorts of Zika virus infection in pregnant women, infants, and acute clinical cases in Latin America and the Caribbean: the ZIKAlliance consortium.
BACKGROUND: The European Commission (EC) Horizon 2020 (H2020)-funded ZIKAlliance Consortium designed a multicentre study including pregnant women (PW), children (CH) and natural history (NH) cohorts. Clinical sites were selected over a wide geographic range within Latin America and the Caribbean, taking into account the dynamic course of the ZIKV epidemic. METHODS: Recruitment to the PW cohort will take place in antenatal care clinics. PW will be enrolled regardless of symptoms and followed over the course of pregnancy, approximately every 4 weeks. PW will be revisited at delivery (or after miscarriage/abortion) to assess birth outcomes, including microcephaly and other congenital abnormalities according to the evolving definition of congenital Zika syndrome (CZS). After birth, children will be followed for 2 years in the CH cohort. Follow-up visits are scheduled at ages 1-3, 4-6, 12, and 24 months to assess neurocognitive and developmental milestones. In addition, a NH cohort for the characterization of symptomatic rash/fever illness was designed, including follow-up to capture persisting health problems. Blood, urine, and other biological materials will be collected, and tested for ZIKV and other relevant arboviral diseases (dengue, chikungunya, yellow fever) using RT-PCR or serological methods. A virtual, decentralized biobank will be created. Reciprocal clinical monitoring has been established between partner sites. Substudies of ZIKV seroprevalence, transmission clustering, disabilities and health economics, viral kinetics, the potential role of antibody enhancement, and co-infections will be linked to the cohort studies. DISCUSSION: Results of these large cohort studies will provide better risk estimates for birth defects and other developmental abnormalities associated with ZIKV infection including possible co-factors for the variability of risk estimates between other countries and regions. Additional outcomes include incidence and transmission estimates of ZIKV during and after pregnancy, characterization of short and long-term clinical course following infection and viral kinetics of ZIKV. STUDY REGISTRATIONS: clinicaltrials.gov NCT03188731 (PW cohort), June 15, 2017; clinicaltrials.gov NCT03393286 (CH cohort), January 8, 2018; clinicaltrials.gov NCT03204409 (NH cohort), July 2, 2017
<i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties
Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7.
Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release.
Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue.
Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7.
Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data
Molecular Characterization of Branchial aquaporin 1aa and Effects of Seawater Acclimation, Emersion or Ammonia Exposure on Its mRNA Expression in the Gills, Gut, Kidney and Skin of the Freshwater Climbing Perch, Anabas testudineus
10.1371/journal.pone.0061163PLoS ONE84
The GenoChip: A New Tool for Genetic Anthropology
The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical,
and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first
phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the
current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic
variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were
designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic
studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution
research into outstanding questions in genetic anthropology. TheGenoChip includes ancestry informativemarkers obtained
for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was
designed to identify all knownY-chromosome andmtDNAhaplogroups. The chip was carefully vetted to avoid inclusion ofmedically
relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial
arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions
had the highestmean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal
component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic
anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs
and over 130,000 autosomal and X-chromosomal SNPswithout any known health,medical, or phenotypic relevance, the GenoChip
is a useful tool for genetic anthropology and population genetics
Association between loop diuretic dose changes and outcomes in chronic heart failure: observations from the ESC-EORP Heart Failure Long-Term Registry
[Abstract]
Aims. Guidelines recommend down-titration of loop diuretics (LD) once euvolaemia is achieved. In outpatients with heart
failure (HF), we investigated LD dose changes in daily cardiology practice, agreement with guideline recommendations,
predictors of successful LD down-titration and association between dose changes and outcomes.
Methods
and results.
We included 8130 HF patients from the ESC-EORP Heart Failure Long-Term Registry. Among patients who had dose
decreased, successful decrease was defined as the decrease not followed by death, HF hospitalization, New York Heart
Association class deterioration, or subsequent increase in LD dose. Mean age was 66±13 years, 71% men, 62% HF
with reduced ejection fraction, 19% HF with mid-range ejection fraction, 19% HF with preserved ejection fraction.
Median [interquartile range (IQR)] LD dose was 40 (25–80) mg. LD dose was increased in 16%, decreased in 8.3%
and unchanged in 76%. Median (IQR) follow-up was 372 (363–419) days. Diuretic dose increase (vs. no change) was
associated with HF death [hazard ratio (HR) 1.53, 95% confidence interval (CI) 1.12–2.08; P = 0.008] and nominally
with cardiovascular death (HR 1.25, 95% CI 0.96–1.63; P = 0.103). Decrease of diuretic dose (vs. no change) was
associated with nominally lower HF (HR 0.59, 95% CI 0.33–1.07; P = 0.083) and cardiovascular mortality (HR 0.62 95% CI 0.38–1.00; P = 0.052). Among patients who had LD dose decreased, systolic blood pressure [odds ratio
(OR) 1.11 per 10 mmHg increase, 95% CI 1.01–1.22; P = 0.032], and absence of (i) sleep apnoea (OR 0.24, 95% CI
0.09–0.69; P = 0.008), (ii) peripheral congestion (OR 0.48, 95% CI 0.29–0.80; P = 0.005), and (iii) moderate/severe
mitral regurgitation (OR 0.57, 95% CI 0.37–0.87; P = 0.008) were independently associated with successful decrease.
Conclusion. Diuretic dose was unchanged in 76% and decreased in 8.3% of outpatients with chronic HF. LD dose increase was
associated with worse outcomes, while the LD dose decrease group showed a trend for better outcomes compared
with the no-change group. Higher systolic blood pressure, and absence of (i) sleep apnoea, (ii) peripheral congestion,
and (iii) moderate/severe mitral regurgitation were independently associated with successful dose decrease
Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry
Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%
Epigenetic mechanisms in virus-induced tumorigenesis
About 15–20% of human cancers worldwide have viral etiology. Emerging data clearly indicate that several human DNA and RNA viruses, such as human papillomavirus, Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, hepatitis B virus, hepatitis C virus, and human T-cell lymphotropic virus, contribute to cancer development. Human tumor-associated viruses have evolved multiple molecular mechanisms to disrupt specific cellular pathways to facilitate aberrant replication. Although oncogenic viruses belong to different families, their strategies in human cancer development show many similarities and involve viral-encoded oncoproteins targeting the key cellular proteins that regulate cell growth. Recent studies show that virus and host interactions also occur at the epigenetic level. In this review, we summarize the published information related to the interactions between viral proteins and epigenetic machinery which lead to alterations in the epigenetic landscape of the cell contributing to carcinogenesis
Implication of 4E-BP1 protein dephosphorylation and accumulation in pancreatic cancer cell death induced by combined gemcitabine and TRAIL
Pancreatic cancer cells show varying sensitivity to the anticancer effects of gemcitabine. However, as a chemotherapeutic agent, gemcitabine can cause intolerably high levels of toxicity and patients often develop resistance to the beneficial effects of this drug. Combination studies show that use of gemcitabine with the pro-apoptotic cytokine TRAIL can enhance the inhibition of survival and induction of apoptosis of pancreatic cancer cells. Additionally, following combination treatment there is a dramatic increase in the level of the hypophosphorylated form of the tumour suppressor protein 4E-BP1. This is associated with inhibition of mTOR activity, resulting from caspase-mediated cleavage of the Raptor and Rictor components of mTOR. Use of the pan-caspase inhibitor Z-VAD-FMK indicates that the increase in level of 4E-BP1 is also caspase-mediated. ShRNA-silencing of 4E-BP1 expression renders cells more resistant to cell death induced by the combination treatment. Since the levels of 4E-BP1 are relatively low in untreated pancreatic cancer cells these results suggest that combined therapy with gemcitabine and TRAIL could improve the responsiveness of tumours to treatment by elevating the expression of 4E-BP1
- …