172 research outputs found
Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease.
Identifying genetic variants associated with circulating protein concentrations (protein quantitative trait loci; pQTLs) and integrating them with variants from genome-wide association studies (GWAS) may illuminate the proteome's causal role in disease and bridge a knowledge gap regarding SNP-disease associations. We provide the results of GWAS of 71 high-value cardiovascular disease proteins in 6861 Framingham Heart Study participants and independent external replication. We report the mapping of over 16,000 pQTL variants and their functional relevance. We provide an integrated plasma protein-QTL database. Thirteen proteins harbor pQTL variants that match coronary disease-risk variants from GWAS or test causal for coronary disease by Mendelian randomization. Eight of these proteins predict new-onset cardiovascular disease events in Framingham participants. We demonstrate that identifying pQTLs, integrating them with GWAS results, employing Mendelian randomization, and prospectively testing protein-trait associations holds potential for elucidating causal genes, proteins, and pathways for cardiovascular disease and may identify targets for its prevention and treatment
Copper Deficiency Induced Emphysema Is Associated with Focal Adhesion Kinase Inactivation
Background: Copper is an important regulator of hypoxia inducible factor 1 alpha (HIF-1a) dependent vascular endothelial growth factor (VEGF) expression, and is also required for the activity of lysyl oxidase (LOX) to effect matrix protein crosslinking. Cell detachment from the extracellular matrix can induce apoptosis (anoikis) via inactivation of focal adhesion kinase (FAK). Methodology: To examine the molecular mechanisms whereby copper depletion causes the destruction of the normal alveolar architecture via anoikis, Male Sprague-Dawley rats were fed a copper deficient diet for 6 weeks while being treated with the copper chelator, tetrathiomolybdate. Other groups of rats were treated with the inhibitor of auto-phosphorylation of FAK, 1,2,4,5-benzenetetraamine tetrahydrochloride (1,2,4,5-BT) or FAK small interfering RNA (siRNA). Principal Findings: Copper depletion caused emphysematous changes, decreased HIF-1a activity, and downregulated VEGF expression in the rat lungs. Cleaved caspase-3, caspase-8 and Bcl-2 interacting mediator of cell death (Bim) expression was increased, and the phosphorylation of FAK was decreased in copper depleted rat lungs. Administration of 1,2,4,5-BT and FAK siRNA caused emphysematous lung destruction associated with increased expression of cleaved capase-3, caspase-8 and Bim. Conclusions: These data indicate that copper-dependent mechanisms contribute to the pathogenesis of emphysema
Endogenous Nmnat2 Is an Essential Survival Factor for Maintenance of Healthy Axons
We conclude that endogenous Nmnat2 prevents spontaneous degeneration of healthy axons and propose that, when present, the more long-lived, functionally related WldS protein substitutes for Nmnat2 loss after axon injury. Endogenous Nmnat2 represents an exciting new therapeutic target for axonal disorders
Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review
Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane) or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pretreatment is usually not so effective because of high stability of the materials to enzymatic or bacterial attacks. The present work is dedicated to reviewing the methods that have been studied for pretreatment of lignocellulosic wastes for conversion to ethanol or biogas. Effective parameters in pretreatment of lignocelluloses, such as crystallinity, accessible surface area, and protection by lignin and hemicellulose are described first. Then, several pretreatment methods are discussed and their effects on improvement in ethanol and/or biogas production are described. They include milling, irradiation, microwave, steam explosion, ammonia fiber explosion (AFEX), supercritical CO2 and its explosion, alkaline hydrolysis, liquid hot-water pretreatment, organosolv processes, wet oxidation, ozonolysis, dilute-and concentrated-acid hydrolyses, and biological pretreatments
Current pretreatment technologies for the development of cellulosic ethanol and biorefineries
Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising
alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the ligninâcarbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids)
Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions
The venerable theory of electrokinetic phenomena rests on the hypothesis of a dilute solution of point-like ions in quasi-equilibrium with a weakly charged surface, whose potential relative to the bulk is of order the thermal voltage (kT/e â 25 mV at room temperature). In nonlinear electrokinetic phenomena, such as AC or induced-charge electro-osmosis (ACEO, ICEO) and induced-charge electrophoresis (ICEP), several V â 100 kT/e are applied to polarizable surfaces in microscopic geometries, and the resulting electric fields and induced surface charges are large enough to violate the assumptions of the classical theory. In this article, we review the experimental and theoretical literatures, highlight discrepancies between theory and experiment, introduce possible modifications of the theory, and analyze their consequences. We argue that, in response to a large applied voltage, the âcompact layerâ and âshear planeâ effectively advance into the liquid, due to the crowding of counterions. Using simple continuum models, we predict two general trends at large voltages: (i) ionic crowding against a blocking surface expands the diffuse double layer and thus decreases its differential capacitance, and (ii) a charge-induced viscosity increase near the surface reduces the electro-osmotic mobility; each trend is enhanced by dielectric saturation. The first effect is able to predict high-frequency flow reversal in ACEO pumps, while the second may explain the decay of ICEO flow with increasing salt concentration. Through several colloidal examples, such as ICEP of an uncharged metal sphere in an asymmetric electrolyte, we show that nonlinear electrokinetic phenomena are generally ion-specific. Similar theoretical issues arise in nanofluidics (due to confinement) and ionic liquids (due to the lack of solvent), so the paper concludes with a general framework of modified electrokinetic equations for finite-sized ions.National Science Foundation (U.S.) (contract DMS-0707641
- âŠ