41 research outputs found

    Estimated GFR, Albuminuria, and Cognitive Performance:The Maastricht Study

    Get PDF
    BACKGROUND: Reduced estimated glomerular filtration rate (eGFR) and albuminuria have been associated with worse cognitive performance. However, few studies have examined whether these associations are confined to older individuals or may be extended to the middle-aged population. STUDY DESIGN: Cross-sectional analyses of a prospective population-based cohort study. SETTING & PARTICIPANTS: 2,987 individuals aged 40 to 75 years from the general population (The Maastricht Study). PREDICTOR: eGFR and urinary albumin excretion (UAE). OUTCOMES: Memory function, information processing speed, and executive function. MEASUREMENTS: Analyses were adjusted for demographic variables (age, sex, and educational level), lifestyle factors (smoking behavior and alcohol consumption), depression, and cardiovascular disease risk factors (glucose metabolism status, waist circumference, total to high-density lipoprotein cholesterol ratio, triglyceride level, use of lipid-modifying medication, systolic blood pressure, use of antihypertensive medication, and prevalent cardiovascular disease). RESULTS: UAE was <15mg/24 h in 2,439 (81.7%) participants, 15 to <30 mg/24 h in 309 (10.3%), and ≥30mg/24 h in 239 (8.0%). In the entire study population, UAE≥30mg/24 h was associated with lower information processing speed as compared to UAE<15mg/24 h (β [SD difference] = -0.148; 95% CI, -0.263 to -0.033) after full adjustment, whereas continuous albuminuria was not. However, significant interaction terms (P for interaction < 0.05) suggested that albuminuria was most strongly and extensively associated with cognitive performance in older individuals. Mean (±SD) eGFR, estimated by the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine-cystatin C equation (eGFRcr-cys), was 88.4±14.6 mL/min/1.73m(2). eGFRcr-cys was not associated with any of the domains of cognitive performance after full adjustment. However, significant interaction terms (P for interaction < 0.05) suggested that eGFRcr-cys was associated with cognitive performance in older individuals. LIMITATIONS: Cross-sectional design, which limited causal inferences. CONCLUSIONS: In the entire study population, albuminuria was independently associated with lower information processing speed, whereas eGFRcr-cys was not associated with cognitive performance. However, both were more strongly and extensively associated with cognitive performance in older individuals

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Sublingual Microvascular Glycocalyx Dimensions in Lacunar Stroke Patients

    No full text
    Background: Cerebral small vessel disease is thought to result from endothelial dysfunction. The glycocalyx, lining the endothelium, is a major determinant of endothelial function. The glycocalyx is partially accessible to flowing red blood cells at its luminal side, called the perfused boundary region (PBR). Glycocalyx damage results in increased PBR, which can be measured in the sublingual microvasculature. We tested whether PBR is increased in patients with cerebral small vessel disease, i. e. lacunar stroke patients, and further distinguished patients with presence of white matter lesions as a sign of extensive cerebral small vessel disease. Methods: We used sidestream dark field imaging of the sublingual microcirculation in 31 lacunar stroke patients (6 with and 25 without white matter lesions) and 19 healthy controls. In each subject, automatic image analyzing software analyzed PBR in more than 3,000 vessel segments and the average dimension of glycocalyx PBR was determined in vessel segments with a diameter of 5-25 mu m. Results: PBR did not differ between lacunar stroke patients and healthy controls (2.10 +/- 0.25 vs. 2.08 +/- 0.24 mu m, p=0.8). However, lacunar stroke patients with white matter lesionshad an increased PBR compared with both healthy controls (2.35 +/- 0.23 vs. 2.08 +/- 0.24 mu m, p = 0.03) and patients without white matter lesions (2.04 +/- 0.22 mu m, p = 0.004). Conclusions: White matter lesions are associated with an increase in the red blood cell permeable part of the sublingual microvascular glycocalyx in lacunar stroke patients. This implicates compromised glycocalyx barrier properties, which is consistent with impaired endothelial function in lacunar stroke patients with white matter lesions

    Systematic screening versus clinical gestalt in the diagnosis of pulmonary embolism in COVID-19 patients in the emergency department.

    No full text
    BackgroundDiagnosing concomitant pulmonary embolism (PE) in COVID-19 patients remains challenging. As such, PE may be overlooked. We compared the diagnostic yield of systematic PE-screening based on the YEARS-algorithm to PE-screening based on clinical gestalt in emergency department (ED) patients with COVID-19.MethodsWe included all ED patients who were admitted because of COVID-19 between March 2020 and February 2021. Patients already receiving anticoagulant treatment were excluded. Up to April 7, 2020, the decision to perform CT-pulmonary angiography (CTPA) was based on physician's clinical gestalt (clinical gestalt cohort). From April 7 onwards, systematic PE-screening was performed by CTPA if D-dimer level was ≥1000 ug/L, or ≥500 ug/L in case of ≥1 YEARS-item (systematic screening cohort).Results1095 ED patients with COVID-19 were admitted. After applying exclusion criteria, 289 were included in the clinical gestalt and 574 in the systematic screening cohort. The number of PE diagnoses was significantly higher in the systematic screening cohort compared to the clinical gestalt cohort: 8.2% vs. 1.0% (3/289 vs. 47/574; p100 mg/L (OR 2.78, 95%CI 1.37-5.66, p = 0.005) were independently associated with PE.ConclusionIn ED patients with COVID-19, the number of PE diagnosis was significantly higher in the cohort that underwent systematic PE screening based on the YEARS-algorithm in comparison with the clinical gestalt cohort, with a number needed to test of 7.1 CTPAs to detect one PE
    corecore