6 research outputs found

    A multi-country test of brief reappraisal interventions on emotions during the COVID-19 pandemic.

    Get PDF
    The COVID-19 pandemic has increased negative emotions and decreased positive emotions globally. Left unchecked, these emotional changes might have a wide array of adverse impacts. To reduce negative emotions and increase positive emotions, we tested the effectiveness of reappraisal, an emotion-regulation strategy that modifies how one thinks about a situation. Participants from 87 countries and regions (n = 21,644) were randomly assigned to one of two brief reappraisal interventions (reconstrual or repurposing) or one of two control conditions (active or passive). Results revealed that both reappraisal interventions (vesus both control conditions) consistently reduced negative emotions and increased positive emotions across different measures. Reconstrual and repurposing interventions had similar effects. Importantly, planned exploratory analyses indicated that reappraisal interventions did not reduce intentions to practice preventive health behaviours. The findings demonstrate the viability of creating scalable, low-cost interventions for use around the world

    Merkel Cell Polyomavirus Large T Antigen is Dispensable in G2 and M-Phase to Promote Proliferation of Merkel Cell Carcinoma Cells

    No full text
    International audienceMerkel cell carcinoma (MCC) is an aggressive skin cancer frequently caused by the Merkel cell polyomavirus (MCPyV), and proliferation of MCPyV-positive MCC tumor cells depends on the expression of a virus-encoded truncated Large T antigen (LT) oncoprotein. Here, we asked in which phases of the cell cycle LT activity is required for MCC cell proliferation. Hence, we generated fusion-proteins of MCPyV-LT and parts of geminin (GMMN) or chromatin licensing and DNA replication factor1 (CDT1). This allowed us to ectopically express an LT, which is degraded either in the G1 or G2 phase of the cell cycle, respectively, in MCC cells with inducible T antigen knockdown. We demonstrate that LT expressed only in G1 is capable of rescuing LT knockdown-induced growth suppression while LT expressed in S and G2/M phases fails to support proliferation of MCC cells. These results suggest that the crucial function of LT, which has been demonstrated to be inactivation of the cellular Retinoblastoma protein 1 (RB1) is only required to initiate S phase entry

    PIAS1 is not suitable as a urothelial carcinoma biomarker protein and pharmacological target.

    No full text
    Urothelial cancer (UC) is one of the most common cancers in Europe and is also one of the costliest to treat. When first line therapies show initial success, around 50% of cancers relapse and proceed to metastasis. In this study we assessed the Protein inhibitor of activated signal transducers and activators of transcription (PIAS)1 as a potential therapeutic target in urothelial cancer. PIAS1 is a key regulator of STAT1 signalling and may be implicated in carcinogenesis. In contrast to other cancer types PIAS1 protein expression is not significantly different in malignant areas of UC specimens compared to non-malignant tissue. In addition, we found that down-regulation and overexpression of PIAS1 had no effect on the viability or colony forming ability of tested cell lines. Whilst other studies of PIAS1 suggest an important biological role in cancer, this study shows that PIAS1 has no influence on reducing the cytotoxic effects of Cisplatin or cell recovery after DNA damage induced by irradiation. Taken together, these in vitro data demonstrate that PIAS1 is not a promising therapeutic target in UC cancer as previously shown in different entities such as prostate cancer (PCa)

    Toxicity of arsenite and thio-DMA(V) after long-term (21 days) incubation of human urothelial cells: cytotoxicity, genotoxicity and epigenetics

    No full text
    This study aims to further mechanistically understand toxic modes of action after chronic inorganic arsenic exposure. Therefore long-term incubation studies in cultured cells were carried out, to display chronically attained changes, which cannot be observed in the generally applied in vitro short-term incubation studies. Particularly, the cytotoxic, genotoxic and epigenetic effects of an up to 21 days incubation of human urothelial (UROtsa) cells with pico- to nanomolar concentrations of iAs(III) and its metabolite thio-DMA(V) were compared. After 21 days of incubation, cytotoxic effects were strongly enhanced in the case of iAs(III) and might partly be due to glutathione depletion and genotoxic effects on the chromosomal level. These results are in strong contrast to cells exposed to thio-DMA(V). Thus, cells seemed to be able to adapt to this arsenical, as indicated among others by an increase in the cellular glutathione level. Most interestingly, picomolar concentrations of both iAs(III) and thio-DMA(V) caused global DNA hypomethylation in UROtsa cells, which was quantified in parallel by 5-medC immunostaining and a newly established, reliable, high resolution mass spectrometry (HRMS)-based test system. This is the first time that epigenetic effects are reported for thio-DMA(V); iAs(III) induced epigenetic effects occur in at least 8000 fold lower concentrations as reported in vitro before. The fact that both arsenicals cause DNA hypomethylation at really low, exposure-relevant concentrations in human urothelial cells suggests that this epigenetic effect might contribute to inorganic arsenic induced carcinogenicity, which for sure has to be further investigated in future studies
    corecore