379 research outputs found
A Soluble Phase Field Model
The kinetics of an initially undercooled solid-liquid melt is studied by
means of a generalized Phase Field model, which describes the dynamics of an
ordering non-conserved field phi (e.g. solid-liquid order parameter) coupled to
a conserved field (e.g. thermal field). After obtaining the rules governing the
evolution process, by means of analytical arguments, we present a discussion of
the asymptotic time-dependent solutions. The full solutions of the exact
self-consistent equations for the model are also obtained and compared with
computer simulation results. In addition, in order to check the validity of the
present model we confronted its predictions against those of the standard Phase
field model and found reasonable agreement. Interestingly, we find that the
system relaxes towards a mixed phase, depending on the average value of the
conserved field, i.e. on the initial condition. Such a phase is characterized
by large fluctuations of the phi field.Comment: 13 pages, 8 figures, RevTeX 3.1, submitted to Physical Review
Dynamics of vibrofluidized granular gases in periodic structures
The behavior of a driven granular gas in a container consisting of
connected compartments is studied employing a microscopic kinetic model. After
obtaining the governing equations for the occupation numbers and the granular
temperatures of each compartment we consider the various dynamical regimes. The
system displays interesting analogies with the ordering processes of phase
separating mixtures quenched below the their critical point. In particular, we
show that below a certain value of the driving intensity the populations of the
various compartments become unequal and the system clusterizes. Such a
phenomenon is not instantaneous, but is characterized by a time scale, ,
which follows a Vogel-Vulcher exponential behavior. On the other hand, the
reverse phenomenon which involves the ``evaporation'' of a cluster due to the
driving force is also characterized by a second time scale which diverges at
the limit of stability of the cluster.Comment: 11 pages, 17 figure
Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV
Results are presented from a search for a W' boson using a dataset
corresponding to 5.0 inverse femtobarns of integrated luminosity collected
during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV.
The W' boson is modeled as a heavy W boson, but different scenarios for the
couplings to fermions are considered, involving both left-handed and
right-handed chiral projections of the fermions, as well as an arbitrary
mixture of the two. The search is performed in the decay channel W' to t b,
leading to a final state signature with a single lepton (e, mu), missing
transverse energy, and jets, at least one of which is tagged as a b-jet. A W'
boson that couples to fermions with the same coupling constant as the W, but to
the right-handed rather than left-handed chiral projections, is excluded for
masses below 1.85 TeV at the 95% confidence level. For the first time using LHC
data, constraints on the W' gauge coupling for a set of left- and right-handed
coupling combinations have been placed. These results represent a significant
improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe
Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV
A search is presented for physics beyond the standard model (BSM) in final
states with a pair of opposite-sign isolated leptons accompanied by jets and
missing transverse energy. The search uses LHC data recorded at a
center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to
an integrated luminosity of approximately 5 inverse femtobarns. Two
complementary search strategies are employed. The first probes models with a
specific dilepton production mechanism that leads to a characteristic kinematic
edge in the dilepton mass distribution. The second strategy probes models of
dilepton production with heavy, colored objects that decay to final states
including invisible particles, leading to very large hadronic activity and
missing transverse energy. No evidence for an event yield in excess of the
standard model expectations is found. Upper limits on the BSM contributions to
the signal regions are deduced from the results, which are used to exclude a
region of the parameter space of the constrained minimal supersymmetric
extension of the standard model. Additional information related to detector
efficiencies and response is provided to allow testing specific models of BSM
physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
Rare coding variants in genes encoding GABA(A) receptors in genetic generalised epilepsies : an exome-based case-control study
Background Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy. Methods For this exome-based case-control study, we used three different genetic generalised epilepsy case cohorts and three independent control cohorts, all of European descent. Cases included in the study were clinically evaluated for genetic generalised epilepsy. Whole-exome sequencing was done for the discovery case cohort, a validation case cohort, and two independent control cohorts. The replication case cohort underwent targeted next-generation sequencing of the 19 known genes encoding subunits of GABA(A) receptors and was compared to the respective GABA(A) receptor variants of a third independent control cohort. Functional investigations were done with automated two-microelectrode voltage clamping in Xenopus laevis oocytes. Findings Statistical comparison of 152 familial index cases with genetic generalised epilepsy in the discovery cohort to 549 ethnically matched controls suggested an enrichment of rare missense (Nonsyn) variants in the ensemble of 19 genes encoding GABA(A) receptors in cases (odds ratio [OR] 2.40 [95% CI 1.41-4.10]; p(Nonsyn)=0.0014, adjusted p(Nonsyn)=0.019). Enrichment for these genes was validated in a whole-exome sequencing cohort of 357 sporadic and familial genetic generalised epilepsy cases and 1485 independent controls (OR 1.46 [95% CI 1.05-2.03]; p(Nonsyn)=0.0081, adjusted p(Nonsyn)=0.016). Comparison of genes encoding GABA(A) receptors in the independent replication cohort of 583 familial and sporadic genetic generalised epilepsy index cases, based on candidate-gene panel sequencing, with a third independent control cohort of 635 controls confirmed the overall enrichment of rare missense variants for 15 GABA(A) receptor genes in cases compared with controls (OR 1.46 [95% CI 1.02-2.08]; p(Nonsyn)=0.013, adjusted p(Nonsyn)=0.027). Functional studies for two selected genes (GABRB2 and GABRA5) showed significant loss-of-function effects with reduced current amplitudes in four of seven tested variants compared with wild-type receptors. Interpretation Functionally relevant variants in genes encoding GABA(A) receptor subunits constitute a significant risk factor for genetic generalised epilepsy. Examination of the role of specific gene groups and pathways can disentangle the complex genetic architecture of genetic generalised epilepsy. Copyright (C) 2018 The Author(s). Published by Elsevier Ltd.Peer reviewe
Results from the CUORE-0 experiment
The CUORE-0 experiment searched for neutrinoless double beta decay in 130Te using an array of 52 tellurium dioxide crystals, operated as bolometers at a temperature of 10 mK. It took data in the Gran Sasso National Laboratory (Italy) since March 2013 to March 2015. We present the results of a search for neutrinoless double beta decay in 9.8 kg-years 130Te exposure that allowed us to set the most stringent limit to date on this half-life. The performance of the detector in terms of background and energy resolution is also reported
Low energy analysis techniques for CUORE
CUORE is a tonne-scale cryogenic detector operating at the Laboratori Nazionali del Gran Sasso (LNGS) that uses tellurium dioxide bolometers to search for neutrinoless double-beta decay of 130Te. CUORE is also suitable to search for low energy rare events such as solar axions or WIMP scattering, thanks to its ultra-low background and large target mass. However, to conduct such sensitive searches requires improving the energy threshold to 10 keV. In this paper, we describe the analysis techniques developed for the low energy analysis of CUORE-like detectors, using the data acquired from November 2013 to March 2015 by CUORE-0, a single-tower prototype designed to validate the assembly procedure and new cleaning techniques of CUORE. We explain the energy threshold optimization, continuous monitoring of the trigger efficiency, data and event selection, and energy calibration at low energies in detail. We also present the low energy background spectrum of CUORE-0 below 60keV. Finally, we report the sensitivity of CUORE to WIMP annual modulation using the CUORE-0 energy threshold and background, as well as an estimate of the uncertainty on the nuclear quenching factor from nuclear recoils inCUORE-0
CUORE and CUORE-0 experiments
Neutrino oscillation experiments proved that neutrinos have mass and this enhanced the interest in neutrinoless double-beta decay (0vßß). The observation of this very rare hypothetical decay would prove the leptonic number violation and would give us indications about neutrinos mass hierarchy and absolute mass scale. CUORE (Cryogenic Underground Observatory for Rare Events) is an array of 988 crystals of TeO2, for a total sensitive mass of 741 kg. Its goal is the observation of 0vßß of 130Te. The crystals, placed into the a dilution cryostat, are operated as bolometers at a temperature close to 10 mK. CUORE commissioning phase has been concluded recently in Gran Sasso National Laboratory, Italy, and data taking is expected to start in spring 2017. If target background rate is reached (0.01counts/day/keV/kg), the sensibility of CUORE will be, in five years of data taking, T1/21026years (1? CL). In order to test the quality of materials and optimize the construction procedures, the collaboration realized CUORE-0, that took data from spring of 2013 to summer 2015. Here, after a brief description of CUORE, I report its commissioning status and CUORE-0 results
Lowering the CUORE energy threshold
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale double beta decay experiment based on TeO2 cryogenic bolometers and is currently in the last construction stage at the Gran Sasso National Laboratory (LNGS). Its primary goal is to observe neutrino-less double beta decay of 130Te, however thanks to the ultra-low background and large projected exposure it could also be suitable for other rare event searches, as the detection of solar axions, neutrinos from type II supernovae or direct detection of dark matter. The sensitivity for these searches will depend on the performance achieved at the low energy threshold. For this reason a trigger algorithm based on continuous data filtering has been developed which will allow lowering the threshold down to the few keV region. The new trigger has been tested in CUORE-0, a single-tower CUORE prototype consisting of 52 TeO2 bolometers and recently concluded, and here we present the results in terms of trigger efficiency, data selection and low-energy calibration
Status and prospects for CUORE
CUORE is a cryogenic detector consisting of 988 TeO2 crystals, 750 g each, and will be operated at a temperature of ~10 mK, to search for neutrinoless double beta decay (0¿ßß) of 130Te. The detector, in the final stages of construction at the Laboratori Nazionali del Gran Sasso (Italy), will start its operations in 2016. CUORE-0, its pilot experiment, has proven the feasibility of CUORE, demonstrating that the target background of 0.01 counts/keV/kg/y and the energy resolution of 5 keV are within reach. CUORE-0 also made the most precise measurement of the 2¿ßß decay. The expected sensitivity of CUORE to the 0¿ßß 130Te half-life is 9 •1025y, for 5 years of data taking. Here, we report the most recent results of CUORE-0, their implications for CUORE, and the current status of the CUORE experiment
- …