2,088 research outputs found

    Biomolecular Detection employing the Interferometric Reflectance Imaging Sensor (IRIS)

    Get PDF
    The sensitive measurement of biomolecular interactions has use in many fields and industries such as basic biology and microbiology, environmental/agricultural/biodefense monitoring, nanobiotechnology, and more. For diagnostic applications, monitoring (detecting) the presence, absence, or abnormal expression of targeted proteomic or genomic biomarkers found in patient samples can be used to determine treatment approaches or therapy efficacy. In the research arena, information on molecular affinities and specificities are useful for fully characterizing the systems under investigation

    Role of gonadotropin-releasing hormone analogues in metastatic male breast cancer: Results from a pooled analysis

    Get PDF
    Background: Male breast cancer is a rare malignancy. Despite the lack of prospectively generated data from trials in either the adjuvant or metastatic setting, patients are commonly treated with hormone therapies. Much controversy exists over the use of gonadotropin-releasing hormone analogues in metastatic male breast cancer patients. We conducted this study to provide more concrete ground on the use of gonadotropin-releasing hormone analogues in this setting. Methods: We herein present results from a pooled analysis including 60 metastatic male breast cancer patients treated with either an aromatase inhibitor or cyproterone acetate as a monotherapy (23 patients) or combined with a gonadotropin-releasing hormone analogue (37 patients). Results: Overall response rate was 43.5 % in patients treated with monotherapy and 51.3 % with combination therapy (p = 0.6). Survival outcomes favored combination therapy in terms of median progression-free survival (11.6 months versus 6 months; p = 0.05), 1-year progression-free survival rate (43.2 % versus 21.7 %; p = 0.05), median overall survival (29.7 months versus 22 months; p = 0.05), and 2-year survival rate (64.9 % versus 43.5 %; p = 0.05). Conclusions: In metastatic male breast cancer patients, the combined use of gonadotropin-releasing hormone analogues and aromatase inhibitors or antiandrogens seems to be associated with greater efficacy, particularly in terms of survival outcomes, compared with monotherapy. Collectively, these results encourage considering these agents in the metastatic setting

    Rational design of highly potent broad-spectrum enterovirus inhibitors targeting the nonstructural protein 2C

    Get PDF
    There is a great need for antiviral drugs to treat enterovirus (EV) and rhinovirus (RV) infections, which can be severe and occasionally life-threatening. The conserved nonstructural protein 2C, which is an AAA+ ATPase, is a promising target for drug development. Here, we present a structure-activity relationship study of a previously identified compound that targets the 2C protein of EV-A71 and several EV-B species members, but not poliovirus (PV) (EV-C species). This compound is structurally related to the Food and Drug Administration (FDA)-approved drug fluoxetine—which also targets 2C—but has favorable chemical properties. We identified several compounds with increased antiviral potency and broadened activity. Four compounds showed broad-spectrum EV and RV activity and inhibited contemporary strains of emerging EVs of public health concern, including EV-A71, coxsackievirus (CV)-A24v, and EV-D68. Importantly, unlike (S)-fluoxetine, these compounds are no longer neuroactive. By raising resistant EV-A71, CV-B3, and EV-D68 variants against one of these inhibitors, we identified novel 2C resistance mutations. Reverse engineering of these mutations revealed a conserved mechanism of resistance development. Resistant viruses first acquired a mutation in, or adjacent to, the α2 helix of 2C. This mutation disrupted compound binding and provided drug resistance, but this was at the cost of viral fitness. Additional mutations at distantly localized 2C residues were then acquired to increase resistance and/or to compensate for the loss of fitness. Using computational methods to identify solvent accessible tunnels near the α2 helix in the EV-A71 and PV 2C crystal structures, a conserved binding pocket of the inhibitors is proposed

    Understanding how perceptions of tobacco constituents and the FDA relate to effective and credible tobacco risk messaging: A national phone survey of U.S. adults, 2014–2015

    Get PDF
    As reported in the original paper [1], the Center for Regulatory Research on Tobacco Communication conducted a telephone survey in 2014–2015 with a national sample of adults ages 18 and older living in the United States (N = 5014). Poverty level was determined using the household size and income reported by the respondents and applying the federal poverty numbers available from the U.S. Department of Health and Human Services in 2014. A coding error was made during the data recoding process such that 2.7% of respondents (n = 129) were incorrectly classified as living above the poverty line. Below are updated Tables 1, 2 and 4 presenting both the original and corrected estimates. No substantive conclusions reported in the paper were affected by this correction

    Cathepsin K Null Mice Show Reduced Adiposity during the Rapid Accumulation of Fat Stores

    Get PDF
    Growing evidences indicate that proteases are implicated in adipogenesis and in the onset of obesity. We previously reported that the cysteine protease cathepsin K (ctsk) is overexpressed in the white adipose tissue (WAT) of obese individuals. We herein characterized the WAT and the metabolic phenotype of ctsk deficient animals (ctsk−/−). When the growth rate of ctsk−/− was compared to that of the wild type animals (WT), we could establish a time window (5–8 weeks of age) within which ctsk−/−display significantly lower body weight and WAT size as compared to WT. Such a difference was not observable in older mice. Upon treatment with high fat diet (HFD) for 12 weeks ctsk−/− gained significantly less weight than WT and showed reduced brown adipose tissue, liver mass and a lower percentage of body fat. Plasma triglycerides, cholesterol and leptin were significantly lower in HFD-fed-ctsk−/− as compared to HFD-fed WT animals. Adipocyte lipolysis rates were increased in both young and HFD-fed-ctsk−/−, as compared to WT. Carnitine palmitoyl transferase-1 activity, was higher in mitochondria isolated from the WAT of HFD treated ctsk−/− as compared to WT. Together, these data indicate that ctsk ablation in mice results in reduced body fat content under conditions requiring a rapid accumulation of fat stores. This observation could be partly explained by an increased release and/or utilization of FFA and by an augmented ratio of lipolysis/lipogenesis. These results also demonstrate that under a HFD, ctsk deficiency confers a partial resistance to the development of dyslipidemia

    Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √S=7 and 8 TeV in the ATLAS experiment

    Get PDF
    Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the H -> gamma gamma, ZZ*, WW*, Z gamma, b (b) over bar, tau tau and mu mu decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 fb(-1) at root s = 7 TeV and 20.3 fb(-1) at root s = 8 TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is 1.18(-0.14)(+0.15). The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease

    Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Get PDF
    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth

    Genetic architecture of subcortical brain structures in 38,851 individuals

    Get PDF
    Subcortical brain structures are integral to motion, consciousness, emotions and learning. We identified common genetic variation related to the volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen and thalamus, using genome-wide association analyses in almost 40,000 individuals from CHARGE, ENIGMA and UK Biobank. We show that variability in subcortical volumes is heritable, and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of these loci by utilizing gene expression, methylation and neuropathological data identified 199 genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, apoptosis, inflammation/infection and susceptibility to neurological disorders. This set of genes is significantly enriched for Drosophila orthologs associated with neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our findings uncover novel biology and potential drug targets underlying brain development and disease
    • 

    corecore