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Abstract

There is a great need for antiviral drugs to treat enterovirus (EV) and rhinovirus (RV) infec-

tions, which can be severe and occasionally life-threatening. The conserved nonstructural

protein 2C, which is an AAA+ ATPase, is a promising target for drug development. Here, we

present a structure-activity relationship study of a previously identified compound that tar-

gets the 2C protein of EV-A71 and several EV-B species members, but not poliovirus (PV)

(EV-C species). This compound is structurally related to the Food and Drug Administration

(FDA)-approved drug fluoxetine—which also targets 2C—but has favorable chemical prop-

erties. We identified several compounds with increased antiviral potency and broadened

activity. Four compounds showed broad-spectrum EV and RV activity and inhibited contem-

porary strains of emerging EVs of public health concern, including EV-A71, coxsackievirus

(CV)-A24v, and EV-D68. Importantly, unlike (S)-fluoxetine, these compounds are no longer

neuroactive. By raising resistant EV-A71, CV-B3, and EV-D68 variants against one of these

inhibitors, we identified novel 2C resistance mutations. Reverse engineering of these muta-

tions revealed a conserved mechanism of resistance development. Resistant viruses first

acquired a mutation in, or adjacent to, the α2 helix of 2C. This mutation disrupted compound

binding and provided drug resistance, but this was at the cost of viral fitness. Additional

mutations at distantly localized 2C residues were then acquired to increase resistance and/

or to compensate for the loss of fitness. Using computational methods to identify solvent

accessible tunnels near the α2 helix in the EV-A71 and PV 2C crystal structures, a con-

served binding pocket of the inhibitors is proposed.
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Introduction

The genus Enterovirus of the family Picornaviridae is a large group of nonenveloped, positive-

sense, single-stranded (+) RNA viruses. Four enterovirus species (EV-A to -D) and three rhi-

novirus species (RV-A to -C) constitute the set of human pathogens that have large medical

and socioeconomical impact, such as poliovirus (PV), coxsackievirus (CV) A and B, echovi-

ruses, numbered EVs (e.g., EV-A71, EV-D68) and RVs (e.g., human rhinovirus [HRV]-A2,

HRB-14) [1]. Though often unnoticed and self-limiting, EV infections can cause serious ill-

nesses and be associated with major complications, which can be life-threatening, especially in

infants, young children, and immunocompromised individuals. Infections with EVs can cause

a broad range of different clinical manifestations, including hand-foot-and-mouth disease,

conjunctivitis, aseptic meningitis, myocarditis, severe neonatal sepsis-like diseases, respiratory

diseases, acute flaccid paralysis (AFP), and acute flaccid myelitis (AFM). In recent years, sev-

eral EVs have been considered as pathogens of increasing health concern. These include

EV-A71 and EV-D68—of which large outbreaks in South East Asia and the United States,

respectively, are associated with severe neurological complications—as well as CV-A24v (an

EV-C species member), which causes large pandemics of a highly contagious conjunctivitis

[2–5]. RVs are the causative agent of the common cold and can trigger exacerbations of asthma

and chronic obstructive pulmonary disease (COPD) [1].

Several strategies may be used to control EV infections. One strategy involves the develop-

ment of vaccines. Inactivated and life attenuated vaccines have been developed against PV,

and recently, inactivated vaccines against EV-A71 were approved in China [6]. However,

given the large number of serotypes (>100 nonpolio EVs and >150 HRVs), development of a

pan-EV and -RV vaccine seems unfeasible. Another strategy is the development of potent anti-

virals. Several EV inhibitors have been identified. These include both direct-acting antivirals,

most of which bind to the viral capsid or the viral protease 3C, as well as inhibitors that target

host factors essential for virus replication (reviewed by Bauer and colleagues [7]). These inhibi-

tors were tested in clinical trials, but their development was halted due to limited efficacy, poor

bioavailability, or toxicity issues. At present, no antiviral against EVs is licensed for therapeutic

use.

An attractive target for antivirals is the highly conserved and multifunctional nonstructural

protein 2C. 2C is an ATPase associated with diverse cellular activities (AAA+ ATPase) classi-

fied within the superfamily 3 (SF3) helicases. These enzymes couple the hydrolysis of ATP to

movement of protein domains which, in turn, drive the unwinding of a nucleic acid substrate.

It has been shown biochemically that 2C functions as RNA helicase and ATP-independent

RNA chaperone [8–11]. 2C fulfills pleiotropic functions during the virus life cycle, including

replication organelle formation, genome replication, and encapsidation [12–19]. Screening of

drug libraries identified many structurally disparate 2C inhibitors such as the Food and Drug

Administration (FDA)-approved drugs fluoxetine, dibucaine, pirlindole, and zuclopenthixol

[20–23]. One of the most promising candidates is fluoxetine, a selective serotonin reuptake

inhibitor (SSRI) that is approved for the treatment of depression and anxiety disorders. Fluox-

etine inhibits replication of viruses belonging to the EV-B and EV-D species and some RV, but

not of viruses belonging to EV-A and EV-C species [21, 23, 24]. Fluoxetine has been used off-

label to successfully treat an immunocompromised child with chronic EV encephalitis [25].

Recently, the safety and efficacy of fluoxetine for treatment of EV-D68 associated AFM was

investigated in a retrospective study. The treatment with fluoxetine revealed no clinical benefit

but rather suggested a worsening of the patient conditions in the fluoxetine-treated cohort

[26]. The reason for this is unknown but might be related to the drug’s SSRI activity. We previ-

ously established that fluoxetine inhibits viral replication stereospecifically by directly binding
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2C [24]. Unfortunately, the chemical moiety important for the SSRI activity is essential for the

antiviral activity, and thus far these two activities could not be uncoupled [27]. This raises con-

cerns about the therapeutic application of fluoxetine and shows that other, potent, biosafe, and

broad-spectrum antiviral inhibitors are needed.

In a high-throughput screen of small molecules, the compound N-(4-fluorobenzyl)-N-

(4-methoxyphenyl)furan-2-carboxamide (which will further be referred to as compound 1)

was identified as a potential CV-B3 2C inhibitor [20]. Previously, it was shown that compound

1 inhibited several viruses belonging to the EV-B species and a clinical isolate of EV-A71, but

it failed to inhibit PV-1 and PV-3. Notwithstanding this, the chemical similarity to fluoxetine,

as well as the absence of a chiralic center and the CF3 at the phenoxy moiety, make it an inter-

esting candidate for the development of more potent and possibly also broad-spectrum EV

inhibitors (Fig 1A). In the present study, we report the rational development of new 2C-target-

ing antiviral inhibitors based on the backbone of compound 1. We identified several broad-

spectrum inhibitors that inhibit representative members of all human EV and RV species

tested as well as contemporary isolates of EV-A71, CV-A24v, and EV-D68. Notably, unlike

(S)-fluoxetine, these broad-spectrum EV inhibitors were shown to be not neuroactive. By rais-

ing EV-A71, CV-B3, and EV-D68 variants resistant against one of the broad-spectrum EV

inhibitors, we identified some novel resistance mutations in 2C. Employing reverse genetics,

we provide evidence for a conserved mechanism of resistance development, involving muta-

tions in the α2 helix of 2C. As these mutations reduced viral replication, additional mutations

at distantly localized residues in 2C were acquired to compensate for the loss of fitness. A

structural model for a conserved binding pocket in 2C is proposed.

Results

Comparison of antiviral activity of (S)-fluoxetine and compound 1

We first compared the antiviral spectrum of (S)-fluoxetine and compound 1. EVs cause an

observable cytopathic effect (CPE), apparent as rounding, detachment, and eventually dying of

Fig 1. Structural comparison of fluoxetine and compound 1. (A) The compounds fluoxetine and compound 1, and a

superimposition of them, are depicted. (B) The furan moiety (R1) is highlighted in blue and the amide moiety (X-N-Y)

in purple. The substitutions that were explored are shown in the purple and blue boxes. (C) The R1 (green) and R2

(orange) moieties of the N-benzylaniline were substituted to the modifications shown in green and orange boxes.

Additionally, the heteroatom (yellow) in the furan moiety was changed.

https://doi.org/10.1371/journal.pbio.3000904.g001
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cells. Both compounds were tested side by side in a CPE-based multicycle viral replication

assay to elucidate whether the compounds inhibited replication of several EV serotypes. Sub-

confluent HeLa R19 cells were treated with 2-fold compound dilutions in the range of 30 μM–

0.23 μM. The cells were infected with virus at low multiplicity of infection (MOI) to reach full

CPE within 3 days. As previously reported, (S)-fluoxetine inhibited EV-B (CV-B3), EV-D

(EV-D68), RV-A (HRV-A2), and RV-B (HRV-B14), but not EV-A (EV-A71) and EV-C (PV-1

and CV-A24) species members [7, 21, 22]. As reported, compound 1 inhibited CV-B3 but not

EV-A71 or PV-1 [20]. Additionally, we show antiviral activity of compound 1 against EV-D68

and HRV-B14 but not CV-A24 and HRV-A2. (S)-fluoxetine showed a 50% cytotoxic concen-

tration (CC50) of 21.63 ± 1.40, whereas compound 1 did not show any adverse cytotoxic effect

in the concentration range tested (Table 1).

Synthesis of compound 1 analogues

Different structural modifications of compound 1 were planned in order to investigate

whether its antiviral activity could be enhanced and its antiviral spectrum broadened. An ini-

tial effort was focused on replacing the original furan with different heteroaromatic rings and

diverse heterocyclic/aliphatic groups (Fig 1B). The role of the amide bond was also explored

by replacing it with either a sulfonamide bond or a methylene bridge. Different substituents

on the 4-position on both rings of the N-benzylaniline moiety were also investigated (Fig 1C).

Preparation of compound 1 analogues, in which the furan ring and the amide bond were mod-

ified, was performed through an efficient two-step synthetic pathway in which compound 4,

prepared by reductive amination between 4-fluotobenzaldehyde 2 and p-anisidine 3, was used

as common synthetic intermediate. The synthesis routes are displayed in S1 and S2 Figs, and

the synthesis route is described in S1 Text. Derivatives 5a–d were synthesized reacting 4 with

different acyl or sulfonyl chloride in dichloromethane using trimethylamine as base. Com-

pound 1 and derivatives 5e and 5f—presenting a pyridine and a tetrahydrofuran ring in place

of furan, respectively—were obtained through an amide coupling reaction between 4 and the

corresponding carboxylic acid in dimethylformamide, using diisopropylethylamine (DIPEA)

as base and 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU)

as a coupling agent. Reductive amination between 4 and furan-2-carbaldehyde yielded com-

pound 5g, whereas preparation of compound 6 was achieved by 2 steps: amide bond formation

reacting 4 and 2-bromoacetyl chloride, followed by nucleophilic displacement of the bromine

Table 1. Comparison of antiviral activity of (S)-fluoxetine and compound 1.

Virus Species Strain SFX Compound 1

EV-A71 EV-A BrCr >30 >30

CV-B3 EV-B Nancy 0.50 ± 0.09 1.71 ± 0.07

PV-1 EV-C Sabin1 >30 >30

CV-A24 EV-C Joseph >30 >30

EV-D68 EV-D Fermon 0.62 ± 0.22 0.32 ± 0.06

HRV-A2 RV-A 8.92 ± 0.23 >30

HRV-B14 RV-B 6.21 ± 0.43 10.84 ± 1.27

CC50 21.56 ± 0,21 >30

Multicycle viral replication assays were performed in HeLa R19 cells, and shown are EC50 and CC50 values in micromolar. Data represent mean ± SD calculated from at

least three different experiments performed in biological triplicates. All underlying experimental data are displayed in S1 Data.

Abbreviations: CC50, 50% cytotoxic concentration; CV, coxsackievirus; EC50, 50% effective concentration; EV, enterovirus; HRV, human rhinovirus; PV, poliovirus;

RV, rhinovirus; SFX, (S)-fluoxetine

https://doi.org/10.1371/journal.pbio.3000904.t001
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atom by methyl amine. Different attempts were made for the preparation of compounds 12a–

b, in which the N-(4-fluoro) benzylaniline portion is bound to position 3 of a pyrrole ring. A

coupling reaction either using TBTU or 1,1’-Carbonyldiimidazole (CDI) as coupling agent did

not give the desired product, with formation of several undesired species. After failing in con-

verting the pyrrole-3-carboxylic acid to the corresponding acyl chloride using thionyl chloride

in dichloromethane, a different approach was applied as reported in S1 Fig synthesis route B.

The pyrrole-3-carboxylic acid nitrogen was selectively tert-butoxycarbonyl (Boc)-protected

through a 3-step synthesis, and the resulting compounds 10a–b were then converted into 11a–

b via TBTU-assisted coupling reaction. Removal of the Boc protecting group using trifluoroa-

cetic acid (TFA) in dichloromethane gave compounds 12a–b in a very high yield. Reductive

amination between 4-methoxyaniline 3 and furan-2-carbaldehyde 13, followed by the reaction

with 4-fluorobenzoyl chloride, gave the final product 15 in a quantitative yield. Analogues

19a–i, bearing different substituents in 4-position of the N-benzylaniline moiety, were pre-

pared following the same synthetic pathway adopted for derivatives 5a–d. Reductive amination

between differently substituted benzaldehydes and anilines yielded the intermediates 18a–i in

a high yield, which were then converted into the corresponding final compounds 19a–i by

reaction with furan-2-carbonyl chloride in dichloromethane and trimethylamine as base. 1H-

pyrrole-2-carbonyl chloride 21, required for the preparation of compound 22, was prepared in

situ by refluxing 1H-pyrrole-2-carboxylic acid 20 with thionyl chloride, as reported in S2 Fig.

Antiviral activity of the newly synthesized compounds against CV-B3

We first evaluated the antiviral activity of the synthesized compounds in a multicycle viral

replication assay using CV-B3. Substituting the furan amide with a methyl group (5a), a

tetrahydrofuran group (5f), or a methyl amine group (6) resulted in a loss of antiviral activity

suggesting that the aromatic furan ring is essential for the antiviral activity (S1 Table). Substi-

tuting the amide in position Y into a SO2 (5b) or CH2 (5g) also resulted in loss of antiviral

activity, suggesting that the amide in position Y is also essential. Changing the methyl group in

position X into a carbonyl group and substituting Y into a CH2 (15) also abolished antiviral

acitivty. To explore the possibility of changing the furan ring, we substituted the R1 position

with several aromatic heterocyclic moieties like thiophen (5d), pyridin (5e), or pyrrole (5c,

12a) (Fig 1B). The thiophene-2-carboxamide (5d: 50% effective concentration [EC50] =

0.51 ± 0.05 μM, CC50� 30 μM) and especially the pyrrole-3-carboxamide substitution (12:

EC50 = 0.08 ± 0.08 μM, CC50 > 30 μM) increased the antiviral activity against CV-B3 (approxi-

mately 4- and 25-fold, respectively) (S1 Table). Taken together, these data indicated that the

amide bond and the furan ring are essential for the antiviral activity, but the modification on

the furan moiety can vary.

Next, we explored the substituents R1 and R2 of the N-benzylaniline moiety (Fig 1C).

Removal of the R1 substituent (19c), the R2 substituent (19b), or both (19a) had only small

effects (i.e., less than 3-fold increase or decrease) on the antiviral activity (S2 Table). Similarly,

substitution of R1 to a tri-fluoro moiety (19d, 19e), a methyl group (19g), or a bulky and highly

lipophilic electron withdrawing pentafluorosulfanyl (19f), with or without removing the R2

substituent, only marginally affected antiviral activity. Substitution of R2 to a tri-fluoro moiety

(19i) also had little effect. Together, this suggests that the substituents in R1 and R2 are not

essential for the antiviral activity and can be modified. Only introduction of a branched alkyl

group in R1 and removing the R2 substituent (19h) decreased the antiviral activity to a larger

extent. Substitution of the R1 group with a CF3 group, removal of the R2 substituent, and

substituting the heteroatom in the furan ring to an N (22) also had little, if any, effect on antivi-

ral activity. Taken together, exploring R1 and R2 of the N-benzylaniline moiety results in
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active compounds in which the antiviral activity is not drastically increased or decreased com-

pared to compound 1.

Antiviral effect and cytotoxicity of active analogues in different cell lines

Next, we tested the active compounds for their antiviral effect and cytotoxicity in different cell

lines. A CPE-based multicycle viral replication assay using CV-B3 was performed in HeLa

R19, HAP1, and Buffalo Green Monkey (BGM) cells. The highest concentration of compounds

used was 100 μM. The furan analogues 5c, 12a, and 5e showed no cytotoxicity. Of these com-

pounds, 12a had the most potent antiviral activity, independent of the cell line (S3 Table). The

N-benzylaniline analogues 19a, 19b, 19c, 19g, and 22 also did not show any cytotoxicity or

very minimal cytotoxicity (19d). The other compounds (5d, 19e, 19f, 19h, 19i) showed cytotox-

icity in a similar range as the parental compound 1. Remarkably, 19h showed antiviral activity

in the human cell lines HeLa R19 and HAP1 but not in monkey BGM cells. The reason for this

is unknown. One explanation is that the drug must be metabolized and that the corresponding

enzyme is absent in BGM. Alternatively, the compound may be inactivated or degraded in

BGM cells. Overall, compounds 12a, 19b, and 19d showed less cytotoxicity and the strongest

increase in selectivity index, which determines the window between antiviral activity and host

cell toxicity, in all cell lines tested relative to compound 1.

Antiviral effect of active compounds against other EVs

To evaluate their spectrum of antiviral activity, we screened the active compounds against a

panel of different EVs representative of each of the 4 human EV and of 2 RV species. Many

compounds showed a similar antiviral spectrum as the parental compound 1. For some com-

pounds, an extended spectrum of activity was observed. Compounds 19a and 19g showed

anti-EV activity but not anti-RV activity. Importantly, compounds 12a, 19b, and 19d inhibited

all representative EVs and RVs (Table 2). We also tested the spectrum of activity of 12a and

Table 2. Antiviral activity of active compounds against representative EV species.

Compound EV-A71 PV-1 CV-A24 EV-D68 HRV-A2 HRV-B14

1 >30 >30 >30 1.13 ± 0.82 >30 12.36 ± 1.51

5c >30 >30 >30 3.47 ± 0.08 >30 >30

5d >30 >30 >30 2.82 ± 0.40 >30 9.29 ± 0.36

5e >30 >30 >30 10.45 ± 1.37 >30 >30

12a 4.03 ± 0.73 3.71 ± 0.18 3.51 ± 0.22 1.08 ± 0.20 8.51 ± 0.22 1.45 ± 0.21

19a 3.50 ± 0.31 32.58 ± 1.08 21.48 ± 0.03 1.34 ± 0.45 >30 >30

19b 0.89 ± 0.09 9.08 ± 0.54 6.39 ± 0.74 0.50 ± 0.26 22.21 ± 0.61 10.51 ± 0.61

19c >30 >30 >30 8.94 ± 0.82 >30 >30

19d 0.27± 0.12 21.54 ± 0.54 19.53 ± 0.55 1.37 ± 0.02 15.15 ± 1.13 4.19 ± 0.58

19e 4.08 ± 0.99 >30 >30 4.47 ± 0.26 >30 8.38 ± 0.48

19f 4.37 ± 0.50 >30 >30 14.50 ± 0.86 >30 5.22 ± 0.54

19g 0.60 ± 0.14 17.50 ± 1.00 10.16 ± 0.87 1.49 ± 0.08 >30 12.51 ± 1.05

19h 1.89 ± 0.21 >30 >30 >30 >30 4.64 ± 0.92

19i >30 >30 >30 3.35 ± 0.19 >30 >30

22 1.27 ± 0.49 >30 >30 12.40 ± 0.81 >30 >30

Multicycle virus replication assays were performed in HeLa R19 cells, and shown are EC50 values in micromolar. Data represent mean ± SD calculated from 2 different

experiments performed in biological triplicates. All underlying experimental data are displayed in S1 Data.

Abbreviations: CV, coxsackievirus; EC50, 50% effective concentration; EV, enterovirus; HRV, human rhinovirus, PV-1, poliovirus 1

https://doi.org/10.1371/journal.pbio.3000904.t002
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19d in a single-cycle viral replication assay. Consistent with the results in the multicycle viral

replication assay, compounds 12a and 19d inhibited all representative viruses in a single-cycle

viral replication assay (Fig 2A), and none of them showed any cytotoxic effect (Fig 2B). Nota-

bly, 12a showed higher potency against all viruses tested except against EV-A71.

The broad-spectrum EV and RV inhibitors 12a, 19b, and 19d were further profiled for

their broad-range antiviral activity against several contemporary isolates of EV-A71 (isolates

derived from an outbreak of hand-foot-and-mouth disease in Taiwan), CV-A24v (isolates

derived from an outbreak in Malaysia 2002–2003), and EV-D68 (isolated from patients with

respiratory infection in the Netherlands 2009–1010) [4, 28, 29]. As expected, the parental com-

pound 1 only inhibited the contemporary strains of EV-D68 (Table 3). (S)-fluoxetine also inhib-

ited contemporary strains of EV-D68 and some, but not all, contemporary EV-A71 strains.

Importantly, 12a, 19b, and 19d inhibited all clinical isolates of EV-A71, CV-A24v, and EV-D68

tested (Table 3). Taken together, we identified three compounds—12a, 19b, and 19d—that inhib-

ited all EVs, all RVs, and all clinical isolates of the serotypes EV-A71, CV-A24, and EV-D68.

Sensitivity of CV-B3 2C mutants to the broad-spectrum EV and RV

compounds

Previously, it was shown that compound 1–resistant CV-B3 viruses had acquired 2C mutations

S58N, C179F, I227V, and N257D. Subsequently, it was shown that C179F alone could provide

Fig 2. Antiviral efficacy of compound 1, 12a, and 19d against a panel of EVs. (A) In a single-cycle viral replication assay, HeLa R19

cells were infected with EV-A71 (strain BrCr), CV-B3 (strain Nancy), PV-1 (strain Sabin), CV-A24 (strain Joseph), EV-D68 (strain

Fermon), HRV-A2, and HRV-B14 at MOI 1. At 30 minutes after infection, the cells were treated with serial dilutions of the parental

compound 1 and the analogues 12a and 19d. Eight hours (EV-A71, CV-B3, PV-1, CV-A24) or ten hours (EV-D68, HRV-2, HRV-14)

post infection, cells were freeze-thawed three times, and virus titers of lysates were determined by endpoint dilution. (B) In parallel,

uninfected cells were treated with compounds only, and cell viability was determined using an MTS assay. Data represent mean ± SD

from one representative experiment. Every experiment was performed in biological triplicates, and two independent experiments were

performed. All underlying experimental data are displayed in S2 Data. CCID50, cell culture infectious dose; CV, coxsackievirus; EV-A71,

enterovirus A71; EV-D68, enterovirus D68; HRV, human rhinovirus; MOI, multiplicity of infection; MTS, 3-(4,5-dimethylthiazol-2-yl)-

5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; PV-1, poliovirus 1.

https://doi.org/10.1371/journal.pbio.3000904.g002
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protection against compound 1 (other mutants were not tested) [20]. Moreover, mutations

C179F, I227V, and the triple-mutant A224V-I227V-A229V, as well as F190L, conferred resis-

tance to (S)-fluoxetine [20, 24]. This likely suggests that both compounds target a common

binding pocket. We investigated whether these mutations conferred cross-resistance to 12a

and 19b. For this, we used a recombinant CV-B3 virus encoding a Renilla luciferase reporter

gene (Rluc-CV-B3) upstream of the capsid coding region. Cells were infected with Rluc-

CV-B3 viruses harboring 2C mutations and treated with serial dilutions of compound. Eight

hours post infection, Renilla luciferase was determined as a sensitive and quantitative read-

out for virus replication. As previously reported, the mutation C179F conferred resistance to

compound 1 [20]. Additionally, we observed that all other common 2C resistance mutations

(C179Y, F190L, I227V, and A224V-I227V-A229V) conferred compound 1 resistance (Fig 3A).

The resistance profile of 12a resembled that of the parental compound 1 and (S)-fluoxetine

(Fig 3B). Remarkably, I227V and A224V-I227V-A229V did not confer resistance to 19d,

whereas C179F and F190L provided only a low level of resistance.

Raising resistant viruses against compound 19d

As known 2C mutations only marginally provided resistance to 19d, we raised 19d-resistant

virus variants of EV-A71, CV-B3, and EV-D68 via a clonal resistance selection procedure

described previously [30].

CV-B3. Two 19d-resistant CV-B3 virus pools were obtained. Both contained a mutation

at position F190 (F190L or F190V) together with other mutations (Table 4). The first CV-B3

virus pool acquired the mutation F190V and three additional 2C mutations: A220P, S233P,

and D234N (Table 4 and Fig 4A). A220P is located close to the motif C that is part of the

Table 3. Antiviral activity of active compounds against different clinical isolates of EV-A71, EV-D68, and CV-A24v.

Virus Strain Cluster SFX 1 12a 19b 19d

EV-A71 BrCr A >30 >30 4.48 ± 0.42 1.12 ± 0.15 1.68 ± 0.62

TW/70811/08 B5 >30 >30 8.18 ± 0.61 0.92 ± 0.17 0.754 ± 0.01

TW/96016/08 B5 >30 >30 9.47 ± 0.04 1.89 ± 0.02 1.94 ± 0.82

TW/72232/04 C4 6.20 ± 1.45 >30 6.41 ± 2.09 3.83 ± 0.25 2.54 ± 1.72

TW/2728/04 C4 4.93 ± 0.57 >30 8.33 ± 0.65 2.10 ± 0.08 2.33 ± 1.23

TW/2945/98a NA 4.65 ± 1.11 >30 9.17 ± 0.41 2.02 ± 0.15 2.9 ± 1.03

EV-D68 Fermon 0.74 ± 0.12 0.65 ± 0.20 1.23 ± 0.16 0.58 ± 0.10 1.36 ± 0.22

4311000742 A 0.66 ± 0.14 3.83 ± 0.40 1.86 ± 0.16 1.31 ± 0.90 3.91 ± 0.13

4310901348 A 1.24 ± 0.32 4.47 ± 0.13 2.72 ± 0.96 1.71 ± 0.68 3.55 ± 0.43

4310902042 B 0.57 ± 0.30 4.05 ± 0.65 1.44 ± 0.23 0.91 ± 0.92 3.53 ± 0.41

4310900947 B 0.95 ± 0.27 3.65 ± 0.34 1.84 ± 0.40 1.85 ± 0.18 4.60 ± 0.37

4310902284 C 1.46 ± 0.36 2.23 ± 0.12 2.31 ± 0.82 1.29 ± 0.21 1.82 ± 0.57

CV-A24 Joseph >30 >30 3.45 ± 0.42 4.99 ± 0.61 18.65 ± 0.67

CV-A24v 110386 >30 >30 1.94 ± 0.07 2.53 ± 0.45 15.66 ± 1.32

110389 >30 >30 3.77 ± 0.32 5.65 ± 0.23 18.55 ± 0.44

110390 >30 >30 1.91 ± 0.55 4.16 ± 0.17 16.75 ± 0.33

110392 >30 >30 2.32 ± 0.23 4.35 ± 0.18 19.06 ± 0.97

aProvided by Steve Oberste from the Centers of Disease Control and Prevention [20].

Multicycle viral replication assay was performed in HeLa R19 cells, and shown are EC50 values in micromolar. Data represent mean ± SD calculated from 2 different

experiments performed in biological triplicates. All underlying experimental data are displayed in S1 Data.

Abbreviations: CV, coxsackievirus; EC50, 50% effective concentration; EV, enterovirus; NA, not available; SFX, (S)-fluoxetine

https://doi.org/10.1371/journal.pbio.3000904.t003
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Fig 3. Mutations in the CV-B3 protein 2C confer resistance to compound 1 and 12a but not 19d. In a single-cycle viral replication assay,

HeLa R19 cells were infected with a selection of Rluc-CV-B3 reporter viruses containing previously identified mutations in the

nonstructural protein 2C conferring resistance to (S)-fluoxetine [24]. (A) HeLa R19 were infected with an MOI 0.1 of Rluc-CV-B3 WT

virus, the triple mutant (A224V-I227V-A229V, designated AVIVAV), the I227V single mutant, the C179F or the C179Y mutant, and the

F190L mutant. At 30 minutes post infection, the cells were treated with serial dilutions of compound 1, 12a, 19d, as well as 10 nM OSW-1 as

a control replication inhibitor that acts via the host protein OSBP. Eight hours post infection, cells were lysed, and virus titers were

determined by measuring Rluc activity as a quantitative measurement for viral replication. Data represent mean ± SD from one experiment

representative of three independent experiments performed in biological triplicates. (B) The EC50 values of the three independent

experiments were calculated for each mutant Rluc-CV-B3 virus and each compound. (S)-fluoxetine was used as a positive control. All

underlying experimental data that are displayed can be found in S2 Data. A.U., arbitrary units; AVIVAV, CV-B3 virus harboring the triple
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ATPase domain and structurally immediately followed by the 224AGSINA229 loop, a hotspot

for resistance mutations toward 2C inhibitors [31, 32]. The second CV-B3 virus pool con-

tained the mutations F190L and H243R (Table 4). The latter amino acid is located near the

arginine finger (which is formed by 240R and R241) of 2C. Both resistant virus pools are

cross-resistant to 12a, 19b, and (S)-fluoxetine. We reverse engineered the single mutations

observed in pool 2 (F190L and H243R), either alone or in combination, into the Rluc-CV-B3

reporter virus. Viruses were characterized for their 19d sensitivity in a single-cycle viral repli-

cation assay, and replication kinetics were analyzed using Renilla luciferase as read-out. Muta-

tion F190L conferred a low level of resistance to 19d, whereas H243R did not provide any

resistance. Remarkably, introducing both mutations F190L/H243R conferred a high level of

resistance (Fig 4B). Replication analysis showed that each of the single mutations caused a

delay in replication kinetics but that the double mutation restored replication kinetics to wild-

type levels (Fig 4C). Mapping of the mutations on the CV-B3 2C homology model that we pre-

viously published (24) showed that residue F190 is located in the α2 helix, whereas residue

H243 is localized more distantly (Fig 4D and S3 Fig). Together, these data suggest that CV-B3

first acquired a mutation at position F190, which gives a low level of resistance and maps in

the conserved part of the α2 helix of the CV-B3 homology model [33]. However, mutation of

this position resulted in a loss of viral fitness. Other mutations in more distantly located resi-

dues (e.g., H243R) were then acquired that further increased resistance and restored the repli-

cation fitness of the virus.

EV-A71. Four different 19d-resistant EV-A71 virus pools were obtained. All contained a

mutation at position M193, either M193L or M193F, alone or in combination with additional

mutations (Table 4 and Fig 4A). M193L was previously reported to provide resistance to gua-

nidine hydrochloride (GuaHCl), a well-known 2C inhibitor [34]. Two virus pools contained a

second mutation, R151H, and displayed a further increase in resistance. The fourth virus pool

contained M193L, R151H, and a third mutation in the Walker A motif, T133S. This pool

exhibited only a slight increase in 19d resistance. Similar profiles were observed when these

mutation A224V-I227V-A229V; CV, coxsackievirus; EC50, 50% effective concentration; MOI, multiplicity of infection; OSBP, oxysterol-

binding protein; Rluc, Renilla luciferase; WT, wild type.

https://doi.org/10.1371/journal.pbio.3000904.g003

Table 4. Phenotypic characterization of 19d-resistant virus pools.

Virus Genotype 2C 19d Fold 12a Fold 19b Fold SFX Fold

EV-A71 WT 0.66 ± 0.09 1 4.65 ± 0.27 1 0.82 ± 0.12 1 >30 ND

EV-A71 pool 1 M193L 3.14 ± 0.36 5 3.34 ± 0.20 1 2.27 ± 0.1 3 >30 ND

EV-A71 pool 2 R151H, M193L 7.64 ± 0.27 12 20.48 ± 1.74 4 10.74 ± 0.40 13 >30 ND

EV-A71 pool 3 R151H, M193F 6.97 ± 0.07 11 23.85 ± 1.34 5 11.10 ± 0.46 14 >30 ND

EV-A71 pool 4 T133S, R151H, M193L 8.24 ± 0.16 12 25.34 ± 0.90 5 11.59 ± 2.01 14 >30 ND

CV-B3 WT 1.26 ± 0.15 1 0.02 ± 0.01 1 0.29 ± 0.05 1 0.43 ± 0.16 1

CV-B3 pool 1 F190V, A220P, S233P, D234N 7.44 ± 0.49 5 0.34 ± 0.12 18 1.46 ± 0.31 5 4.58 ± 0.31 11

CV-B3 pool 2 F190L, H243R 12.40 ± 1.13 9 0.26 ± 0.03 14 2.18 ± 0.03 8 4.13 ± 1.94 10

EV-D68 WT 1.55 ± 0.17 1 1.25 ± 0.09 1 0.83 ± 0.09 1 0.65 ± 0.16 1

EV-D68 pool 1 T196S 3.79 ± 0.18 2 3.12 ± 0.32 2 1.75 ± 0.10 2 10.21 ± 0.01 16

EV-D68 pool 2 V96M 4.35 ± 0.09 3 4.18 ± 0.03 3 2.76 ± 0.14 4 10.05 ± 0.45 15

Multicycle viral replication assays were performed in HeLa R19 cells, and shown are EC50 values in micromolar and fold resistance. Data represent mean ± SD

calculated from three different experiments all performed in biological triplicates. All underlying experimental data are displayed in S1 Data.

Abbreviations: CV, coxsackievirus; EC50, 50% effective concentration; EV, enterovirus; ND, not determined; SFX, (S)-fluoxetine; WT, wild type

https://doi.org/10.1371/journal.pbio.3000904.t004
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Fig 4. Effect of reverse-engineered 2C mutations on 19d sensitivity and replication fitness. (A) Schematic

representation of the viral genome with a focus on the 2C protein and the functional domains. The resistance mutations

for EV-A71 are highlighted with black stars, CV-B3 resistance mutations are depicted in blue triangles, and EV-D68

resistance mutations in green squares. (B) Single-cycle viral replication assay to determine 19d sensitivity of Rluc-CV-B3

reporter viruses harboring 2C mutations. HeLa R19 cells were infected with MOI 0.1 of RLuc-CV-B3 reporter virus and

treated with serial dilutions of 19d. Rluc activity was determined at 8 hours post infection as a quantitative measure of

replication. (C) Replication of Rluc-CV-B3 2C mutant viruses. HeLa R19 cells were infected at MOI 0.1 with the RLuc-

CV-B3 viruses, and at the indicated time points, the cells were lysed and luciferase activity was determined. (D) The 2C

mutations of CV-B3 2C which were acquired during resistance selection are mapped onto the previously published
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virus pools were tested for their resistance to inhibitors 12a and 19b (Table 4). To obtain more

insight into the effects of the mutations on 19d sensitivity and virus growth, we introduced

them—either individually or in combination—into the infectious clone of EV-A71 by reverse

genetics. The mutant viruses were characterized for their 19d resistance in a multicycle viral

replication assay (Fig 4E). Moreover, we determined single-cycle replication kinetics of these

viruses in the absence of inhibitor (Fig 4F). The single mutation M193L, but not T133S or

R151H, conferred 19d resistance. Whereas R151H alone did not confer resistance, the double

mutation (M193L/R151H) further increased the resistance. Introduction of a third mutation,

T133S (M193L/R151H/T133S), slightly further increased resistance (Fig 4E). In the replication

kinetics analysis, we observed that replication of viruses carrying single mutations M193L or

T133S, but not R151H, was impaired (Fig 4F). Remarkably, viruses carrying double mutation

M193L/R151H or triple mutation M193L/R151H/T133S showed wild-type replication kinet-

ics. These resistance mutations were mapped on the EV-A71 2C crystal structure (PDB:

5GRB) (Fig 4G). The data are in line with those observed for CV-B3 in that a primary mutation

in the α2 helix of EV-A71 2C (M193L) was acquired that provided resistance to 19d but which

was at the expense of virus fitness. Additional mutations (R151H and T133S) were then

acquired which compensated for the loss of fitness and further increased resistance.

EV-D68. Two 19d-resistant EV-D68 pools were obtained. One pool contained the single

mutation V96M, while the other contained the single mutation T196S (Fig 4A). Both resistant

virus pools conferred 19d resistance and cross-resistance to 12a, 19b, and (S)-fluoxetine

(Table 4). Both mutations were reverse engineered into an EV-D68 infectious clone and tested

for their 19d sensitivity in a multicycle viral replication assay as well as for their replication

kinetics. Both V96M and T196S provided 19d resistance, although resistance was rather mod-

erate (Fig 4H). The V96M mutant virus grew comparably to wild-type, whereas the replication

kinetics of T196S was impaired (Fig 4I). Mapping of the mutations on an EV-D68 2C homol-

ogy model that we built on the 2C crystal structure of EV-A71 showed that residue T196 is

located very close to the α2 helix (Fig 4J). Unfortunately, we cannot draw any conclusions on

the position and/or role of residue V96 since structural data of the first 116 amino acids of 2C

are missing.

In summary, we observed a common pattern that 19d-resistant EV-A71, CV-B3, and

EV-D68 variants acquired a mutation in the α2 helix or very close to it. Acquiring these muta-

tions came with a fitness cost for the virus. Additional mutations in more distantly localized

homology model of CV-B3 2C [24]. The amino acid F190 is highlighted in green, the amino acids H243 and A220P in

yellow, and the amino acids S233 and D234 in red. (E) Multicycle viral replication assay to determine 19d sensitivity of

reverse-engineered EV-A71 2C mutant viruses. HeLa R19 cells were treated with serial dilutions of 19d and infected with

MOI of 0.001 of the reverse-engineered EV-A71 mutant viruses. After 3 days, the cells’ viability was determined using an

MTS assay. (F) Replication of EV-A71 reverse-engineered viruses. After infection for 30 minutes at MOI 5, cells were

incubated for the indicated time points. Cells were freeze-thawed three times to harvest infectious virus particles. Total

virus titers were determined by endpoint dilution. (G) The 2C mutations of EV-A71 2C which were acquired during

resistance selection are mapped onto the EV-A71 2C crystal structure PDB: 5GRB [33]. The amino acid M193 is depicted

in green, the amino acid R151 in yellow, and T133 in red. (H) Multicycle viral replication assay to determine 19d

resistance of reverse-engineered EV-D68 2C mutant viruses. The experiment was done similar to (E), and cells were

infected with MOI 0.1 to reach full CPE within 3 days. (I) Growth curves of reverse-engineered EV-D68 viruses. Growth

kinetics was assessed similar to in (C). (J) The amino acid T196 of EV-D68 2C is highlighted in green and mapped onto a

homology model of EV-D68 2C which was built similar to the CV-B3 homology model based on the crystal structure of

EV-A71 (PDB: 5GRB). The primary mutation T196S is highlighted in green. Data represent mean ± SD from one

experiment representative of at least two independent experiments performed in biological triplicates. All underlying

experimental data that are displayed can be found in S2 Data. A.U., arbitrary units; CCID50, 50% cell culture infective

dose; CV, coxsackievirus; EV, enterovirus; IRES, internal ribosomal entry side; MOI, multiplicity of infection; MTS, 3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; PDB, protein database; Rluc,

Renilla luciferase; WT, wild type.

https://doi.org/10.1371/journal.pbio.3000904.g004
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residues were obtained that increased resistance and improved the viral fitness. Together, this

suggests that the α2 helix may form a part of the compound binding site.

In silico identification of a putative solvent accessible tunnel in 2C

To strengthen the hypothesis that the α2 helix is likely part of the binding pocket, we used

computational methods to identify solvent accessible tunnels within the EV-A71 2C crystal

structure (PDB: 5GRB) [35–38]. Using the amino acid M193 in the α2 helix of EV-A71 2C as

starting coordinate, and an origin radius of 5 Å, we identified three solvent accessible tunnels

surrounding the α2 helix in EV-A71 (Fig 5A). These tunnels connect the interior of the mole-

cule with the surrounding environment and provide a possible entry side for compounds to

bind 2C.

Next, we explored the occurrence of solvent accessible tunnels in the 2C protein of PV, of

which also a crystal structure has been solved (PDB: 5Z3Q) [33]. Previous studies have identi-

fied 2C mutations F164Y, N179G/A, and M187L in PV to confer resistance to the 2C inhibi-

tors GuaHCl or MRL-1237 [35–39]. These residues localize very close to the α2 helix (Fig 5B).

We mapped the mutations on the 2C crystal structure of PV (PDB: 5Z3Q) and looked for sol-

vent accessible tunnels using M187 amino acid as starting coordinate and an origin radius of 5

Å. We were able to identify a tunnel at the α2 helix of 2C PV, and this tunnel shows similarities

to the tunnel we observed in EV-A71 2C. The same tunnel was predicted when residues F164

(S4 Fig Panel A) or N179 (S4 Fig Panel B) were used as starting coordinate. Additionally,

other programs also predicted very similar solvent-accessible tunnels or cavities within 2C of

EV-A71 and PV-1 (S4 Fig Panel C-F). Taken together, we propose that the α2 helix in 2C is

part of the binding pocket of inhibitors and that mutations in this helix disrupt binding of

these inhibitors, thereby providing a first layer of resistance.

To test the hypothesis that the 2C α2 helix mutation disrupted compound binding, we per-

formed thermal shift assays with (S)-fluoxetine and 19d. We expressed recombinant fragments

of CV-B3 2C lacking the first 116 amino acids and the corresponding 2C fragment of the single

mutant F190L. Both (S)-fluoxetine and 19d caused a dose-dependent shift in the melting tem-

perature of the wild-type 2C protein, indicative of a direct binding of the wild-type protein to

Fig 5. In silico prediction of solvent accessible tunnels reveals a binding pocket surrounding the α2 helix of 2C.

(A) The MOLE tool was used to identify solvent exposed tunnels surrounding the α2 helix of 2C [40]. For EV-A71 the

2C crystal structure PDB: 5GRB was used, and the amino acid M193 was used as starting point [33]. (B) For PV the 2C

crystal structure PDB: 5Z3Q with the amino acid M187 as starting point [41]. The primary mutations of EV-A71 and

PV-1 are highlighted in green and the in silico predicted tunnels are colored in yellow, blue, and orange. Asn,

asparagine; EV, enterovirus; PDB, protein database; Phe, phenylalanin; PV, poliovirus.

https://doi.org/10.1371/journal.pbio.3000904.g005
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the compounds (Fig 6A and 6B). No shift was observed upon testing the F190L mutant, indi-

cating that the binding of the compounds was disrupted by the α2 helix mutation. These data

provide the first evidence that mutations in the α2 helix of 2C disrupt compound binding.

Combination of 12a and 19b reveals most potent broad-spectrum EV and

RV inhibitor

Our data suggest that 12a and 19b as well as 19d target the same common druggable binding

pocket in the 2C proteins of CV-B3, EV-A71, and EV-D68. Next, we were wondering whether

a combination of the chemical features of the broad-spectrum EV and RV inhibitors 12a and

19b could increase the antiviral activity. Therefore, we synthesized a new compound with the

combined chemical moieties of the furan amide analogue 12a with the fluoride moiety of the

N-benzylaniline analogues 19b (Fig 7A). The antiviral activity and the antiviral spectrum of

the new combined analogue 12b was tested in a multicycle viral replication assay against the

panel of prototypic EV and RV species. Compound 12b showed an improved antiviral profile

against all tested viruses compared to the parental compound 1 and the analogue 12a (Fig 7B).

The antiviral activity against the serotypes CV-B3, EV-D68, and HRV-B14 is in the nM range,

whereas its activity is in the sub-μM or low μM range against EV-A71, PV-1, CV-A24, and

HRV-2. These data show that broad-spectrum 2C inhibitors can be developed in the therapeu-

tically relevant nM range.

Broadly active EV inhibitors do not affect serotonin, dopamine, or

norepinephrine transporter activity and neural activity

Fluoxetine is an SSRI, and both enantiomers are equipotent in SSRI activity. Given the struc-

tural similarity of the compound 1 analogues to fluoxetine, we wanted to exclude that these

analogues also exhibit the same undesirable neurological effects. To do this, we investigated

whether the compounds inhibit the monoamine reuptake of serotonin, dopamine, and norepi-

nephrine through inhibition of their corresponding transporters serotonin transporter

(SERT), dopamine transporter (DAT), and norepinephrine transporter (NET). Previously, it

was shown using the Neurotransmitter Transporter Uptake Assay that human embryonic kid-

ney (HEK) 293 cells transfected with human DAT, NET, and SERT show a stable and near lin-

ear increase in fluorescence indicating proper transporter function (Fig 8A) [42]. Exposure of

Fig 6. Resistance mutations in the α2 helix of CV-B3 2C disrupt compound binding. The binding of (A) (S)-

fluoxetine and (B) 19d to a recombinant fragment of the CV-B3 2C protein and the CV-B3 2C α2 helix mutant F190L

was assessed by thermal shift assays. The thermal shift of 2C is represented by change in melting temperature (ΔTm).

The dashed line represents data from the negative control BF738735, an inhibitor of the pan-EV host factor

phosphateidylinositol-4-III β, used at a concentration of 100 μM. Data shown are representative of one out of two

experiments which were performed in technical triplicates. Error bars depict SD calculated from technical triplicates of

the representative experiment. All underlying experimental data that are displayed can be found in S2 Data. CV,

coxsackievirus; EV, enterovirus; Tm, melting temperature; WT, wild type.

https://doi.org/10.1371/journal.pbio.3000904.g006
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HEK293 cells expressing human SERT to fluoxetine (1 and 100 μM) resulted in complete inhi-

bition of SERT-mediated uptake (Fig 8B). These results are in line with fluoxetine acting as an

SSRI and with previous results showing concentration-dependent inhibition of human SERT

by fluoxetine (50% inhibitory concentration [IC50] = 0.3 μM, full inhibition at� 1 μM [42]).

As reported, fluoxetine promiscuously inhibited also the DAT and NET activity at 100 μM. In

contrast, neither 12a, 19b, 19d, nor the combined compound 12b inhibited SERT, DAT, or

NET function at 1 μM or 100 μM, respectively. We also used a multiwell micro-electrode array

(mwMEA) to assess effects of fluoxetine and the compound 1 analogues on spontaneous neu-

ronal activity to determine their neurotoxic potential (for review see [43] and overview of

methods see S5 Fig). Unlike fluoxetine—which inhibited the mean spike rate (MSR), mean

burst rate (MBR), and mean network burst rate (MNBR) in a concentration-dependent man-

ner—none of the compound 1 analogues affected neuronal activity (S6 Fig).

Discussion

EVs, especially EV-A71, EV-D68, and CV-A24v, impose serious public health threats. Cur-

rently, there are no antiviral therapies licensed to treat EV infections. The highly conserved

nonstructural protein 2C fulfills pleiotropic functions during the viral life cycle. Hence, it

Fig 7. Combination of compound 12a and 19b reveals the most potent broad-spectrum EV and RV inhibitor 12b. (A) The chemical backbone of 12b is

shown. The table represents the EC50 values in μM ± SD of compound 12b. EC50 is calculated for the panel of representative EV and RV. EC50 values

represent mean values that are calculated from three independent experiments which were performed in biological triplicates. (B) A multicycle viral

replication assay was performed to determine the antiviral activity of compound 12b. HeLa R19 cells were treated with serial dilutions of parental

compound 1, the furan amide analogue 12a and 12b. Immediately thereafter, cells were infected with EV-A71 (BrCr), CV-B3 (Nancy), PV-1, CV-A24

(Joseph), EV-D68 (Fermon), HRV-A2, and HRV-B14 at low MOI (depending on the virus, see Material and methods) to reach full CPE within 3 days. Data

are shown from one representative experiment out of three independent experiments which were performed in biological triplicate. All underlying

experimental data that are displayed can be found in S2 Data. CPE, cytopathic effect; CV, coxsackievirus; EC50, 50% effective concentration; EV,

enterovirus; HRV, human rhinovirus; PV, poliovirus; RV, rhinovirus.

https://doi.org/10.1371/journal.pbio.3000904.g007
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represents an interesting target for the development of broad-spectrum anti-EV inhibitors.

The FDA-approved drug fluoxetine, which is an SSRI, was an attractive candidate for the treat-

ment of EV infections, but several recent studies raised concerns about its clinical application.

One retrospective study revealed adverse effects when using fluoxetine as treatment option for

EV-D68-associated paralysis. The data suggested a worsening of patient condition, possibly

due to its SSRI activity [26]. Additionally, our previous work showed that the antiviral activity

of fluoxetine is unlikely to be decoupled from its SSRI activity [24, 27]. This clearly demon-

strates that more potent and safer molecules are needed for treatment of EV infections.

In a high-throughput screen, compound 1 was identified as a CV-B3 inhibitor [20]. The

chemical structure is reminiscent of fluoxetine but lacks a chiral center and the tri-fluoro moi-

ety important for the SSRI activity of fluoxetine. In this study, we investigated the pharmaco-

phoric features of compound 1 which underpin its antiviral activity. An important focus was

to explore the furan amide moiety and the substituents of the N-benzylaniline moiety. First,

the synthesized analogues were screened for their antiviral activity against CV-B3. The struc-

ture-activity relationship study revealed that the furan amide, but not the N-benzylaniline

Fig 8. Broadly active EV inhibitors do not affect SERT, DAT, or NET activity. (A) Overview of the principle of the fluorescent

measurements of neurotransmitter transporter function. Cells expressing human monoamine transporters (SERT, DAT, or NET) are

incubated with a fluorescent transporter substrate and a cell-impermeable masking dye that extinguishes only extracellular fluorescence

(left). Cells gain fluorescence following uptake of the substrate, and the increase in fluorescence is a measure for transporter function (top

right). Cells with impaired transporter function will take up less substrate, resulting in lower fluorescence (bottom right). (B) Effects of

fluoxetine and compounds 12a, 12b, 19b, and 19d on inhibition of SERT-, DAT-, and NET-mediated uptake of fluorescent substrate.

Uptake is shown as mean ± SEM as percentage compared to control (DMSO) wells (n = 7–16 wells, derived from 2 independent

cultures). All underlying experimental data that are displayed can be found in S2 Data. DAT, dopamine transporter; EV, enterovirus; FX,

racemic fluoxetine; NET, norepinephrine transporter; SERT, serotonin transporter.

https://doi.org/10.1371/journal.pbio.3000904.g008
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moiety, was essential for the antiviral activity. Even though the furan amide was essential, dif-

ferent modifications can be introduced. Subsequently, compounds that inhibited CV-B3 were

evaluated for their ability to inhibit representatives of four human EV and two RV species. Sev-

eral compounds showed an increased potency and broadened antiviral spectrum relative to

parental compound 1. Four of these compounds—the furan analogues 12a and 12b and the N-

benzylaniline analogues 19b and 19d—inhibited all representative EVs and RVs, suggesting

broad-spectrum EV and RV activity. Moreover, SERT/DAT/NET experiments suggest that the

compounds, unlike (S)-fluoxetine, are not neuroactive.

Several structurally disparate 2C inhibitors have already been identified. With the exception

of fluoxetine, dibucaine, pirlindole, and several other 2C inhibitors presented at a conference,

the anti-enteroviral spectrum of most 2C-targeting compounds has not been systematically

characterized [7, 22, 44]. The FDA-approved drugs fluoxetine (racemic mixture), dibucaine,

and pirlindole and the parental compound 1 showed a limited antiviral spectrum and low

potency [20]. We speculate that the broader antiviral spectrum of 2C inhibitors correlates with

an increased antiviral activity and potency. Our previous finding that higher antiviral activity

of (S)-fluoxetine resulted in a broader antiviral spectrum than the less active racemic mixture

lends support to this hypothesis [24]. In our study, we identified several compounds that

showed higher antiviral potency as well as a broader spectrum. The 4 compounds that showed

the highest antiviral activity (i.e., 12a, 12b, 19b, and 19d) showed broad-spectrum EV and RV

activity. These data lend further support to the proposed correlation between the antiviral

potency of 2C inhibitors and the broadness of their antiviral spectrum.

To validate the broad-spectrum EV antiviral activity of 12a, 19b, and 19d, several clinical

isolates of the serotypes EV-A71, CV-A24v, and EV-D68 were tested. Indeed, the compounds

inhibited all clinical isolates, albeit with subtle differences. We reported previously that (S)-flu-

oxetine does not inhibit EV-A71 strain BrCr. Interestingly, several EV-A71 clinical isolates

were inhibited by (S)-fluoxetine [20, 24]. The differences in the antiviral spectrum could be

due to very minor intrinsic genetic differences between the clinical isolates of EV-A71. How-

ever, the observation that all isolates are inhibited by compounds 12a, 19b, and 19d but not the

parental compound 1 makes it more likely that there is a correlation between antiviral potency

and antiviral spectrum.

Combining the chemical moieties of 12a with 19b resulted in the most potent broad-spec-

trum EV and RV inhibitor. This compound, 12b, inhibited CV-B3, EV-D68, and HRV-B14 in

the nM range, EV-A71 in the sub-μM range, and EV-C and HRV-A2 in the low μM range.

The selectivity index, a parameter to express a compound’s in vitro efficacy in the inhibition of

virus replication, showed therapeutically relevant values in the range of 100 up to 3,000 and

even higher against CV-B3 for the broad-spectrum EV and RV inhibitors (S3 Table). Together,

these data show that 2C is an excellent target for highly potent antiviral drugs and that broad-

spectrum 2C inhibitors can be developed in the therapeutically relevant nM range.

Raising compound-resistant viruses can reveal important insights into the mode of action

of these compounds and their binding site. It was previously shown that mutation C179F con-

ferred resistance to compound 1, whereas mutations I227V and A224V-I227V-A229V pro-

vided resistance to the thiazolobenzimidazol TBZE-029 and (S)-fluoxetine [20, 23, 24, 31]. We

tested each of these mutations for their resistance toward compound 1, 12a, 19d, and (S)-fluox-

etine. Compound 1 and 12 showed a similar resistance profile as (S)-fluoxetine. The resistance

profile of 19d was slightly different. Unlike to the other compounds, mutations C179F and

F190L provided some 19d resistance, but mutations I227V and A224V-I227V-A229V did not

provide any resistance. These subtle differences in the resistant profiles of compound 1 and

12a on the one hand and 19d on the other hand may be explained by small differences in the

interaction between the compounds and 2C, but the exact reason remains to be determined.
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To gain more insight in how EVs can develop resistance, we raised 19d-resistant pools of

EV-A71, CV-B3, and EV-D68. The importance of the mutations that were observed in these

pools was evaluated by introducing them, alone or in combination, in recombinant viruses

using reverse genetics. The recovered viruses were characterized for resistance as well as virus

fitness. We observed a common mechanism in resistance development toward 19d in the

serotypes EV-A71 and CV-B3. First, mutations in the α2 helix of 2C, or very close to it, were

acquired that conferred 19d resistance but at the same time reduced viral fitness. Second, resis-

tant EV-A71 and CV-B3 virus pools acquired additional mutations that are distant from the

α2 helix. These distal mutations alone provided little if any resistance. But the combination of

α2 helix mutations together with the distal mutations increased 19d resistance and additionally

restored viral fitness. In addition, we raised 19d-resistant EV-D68 viruses. Similar to EV-A71

and CV-B3, a resistance mutation—T196S—arose close to the α2 helix. Interestingly, we also

identified an EV-D68 virus pool that carried the mutation V96M. To our knowledge, this is

the first mutation against a 2C inhibitor that is located outside the known structure. This sug-

gests that the ATPase domain works in concert with the enigmatic N-terminal domain of 2C.

We propose that mutations in, or in proximity to, the α2 helix of 2C disrupt compound bind-

ing, which results in loss of viral fitness. Additional distant mutations are required to compen-

sate for the fitness defects and to further increase resistance.

2C is an SF3 helicase, which typically form hexameric assemblies. Such proteins have Walker

A, B, and C motifs which form the catalytic site for ATPase activity. The energy produced by

ATP hydrolysis induces a series of conformational changes that drive unwinding of RNA or

DNA by SF3 helicases [45]. To support the hypothesis that the α2 helix of 2C forms part of

the compound binding pocket, we predicted solvent accessible tunnels in the 2C proteins of

EV-A71 and PV-1. We identified several tunnels that intersect at the α2 helix of EV-A71 2C.

One of these tunnels was also present in the PV-1 2C. On basis of these observations, we propose

that there is a common druggable binding pocket close to the α2 helix of 2C that is conserved in

all the EVs and RVs. In support of this, 19d-resistant virus pools conferred cross-resistance to

the broad-spectrum EV and RV inhibitors 12a and 19b. Additionally, CV-B3 and EV-D68 virus

pools also conferred cross-resistance to (S)-fluoxetine. Furthermore, the compounds (S)-fluoxe-

tine and 19d caused a dose-dependent shift in the melting temperature of recombinant CV-B3

2C protein suggestive of direct binding. Both compounds did not cause a shift in melting tem-

perature of the F190L 2C mutant. This lends further support that the α2 helix is part of the bind-

ing pocket and that mutations in the α2 helix disrupt compound binding.

All predicted tunnels are very close to the Walker B domain but on the opposite side from

where ATP is coordinated. This indicates that the compounds likely inhibit the 2C protein

allosterically and do not directly occupy the ATP binding site (S2 Fig Panel E). Several possibil-

ities for allosteric inhibition of the 2C protein can be proposed. Inhibitor binding could pre-

vent the proper assembly of the functional 2C oligomer, or conversely, the inhibitors might

stabilize the 2C protein and prevent conformational changes during ATP hydrolysis. This

mechanism has already been shown for a small molecule inhibitor of the human AAA

+ ATPase, p97 [46]. The allosteric p97 inhibitor binds at the interface of two adjacent protein

domains and thereby prevents propagation of the conformational changes that are necessary

for proper p97 ATPase function. The lack of oligomeric 2C structures makes it difficult to elu-

cidate whether the compounds would stabilize or destabilize the quaternary structure, or

inhibit the enzymatic activities of 2C. Crystallographic or cryogenic electron microscopy struc-

tures of oligomeric 2C in complex with inhibitors are needed to clarify the binding site and the

mode of action of 2C inhibitors.

In conclusion, we identified several novel, highly potent inhibitors with broad-spectrum

EV and RV activity. Our data suggest that the 2C proteins of EV and RV share a common,
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druggable binding pocket. Additionally, these compounds are less cytotoxic compared to the

parental compound 1. The structure of the novel analogues resembles that of fluoxetine, but

importantly, they lack the tri-fluoro moiety that is required for the SSRI activity of fluoxetine.

This suggests that the novel inhibitors do not act as SSRIs, but this remains to be experimen-

tally proven in vivo. Since the compounds are not FDA approved, pharmacological, pharma-

cokinetics, and toxicological data are required. Given the broad-spectrum activity of these

novel compounds, we believe these to be promising candidates for further preclinical assess-

ment. Eventually, these compounds could be developed into urgently needed broad-spectrum

antivirals to combat EV and RV infections.

Materials and methods

Ethics statement

All experimental procedures involving animals were in accordance with Dutch law and

approved by the Ethical Committee for Animal Experimentation of Utrecht University and

the Central Committee Animal Experimentation (CCD; #AVD108002016443-1). Animals

were treated humanely, and all efforts were made to minimize the number of animals used

and their suffering.

Cells

BGM cells (purchased from European Cell Culture Collection [ECACC]), Rhabdomyosar-

coma (RD) cells (American Type Culture Collection [ATCC]) and HeLa R19 cells (ATCC)

were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Lonza, Switzerland) supple-

mented with 10% (vol/vol) fetal calf serum (FCS; Lonza). HAP1 cells were obtained from Hori-

zon Discovery Group plc (Cambridge, UK) and cultured in Iscove’s Modified Dulbecco’s

Medium (IMDM; Lonza) containing 10% (vol/vol) FCS. Huh7-Lunet 7/T7, a stable cell pool

expressing T7 RNA polymerase and blasticidin S-deaminase [47], were kindly provided by

Volker Lohmann (Universitätsklinikum Heidelberg, Germany) and cultured in DMEM sup-

plemented with 10% FCS and 10 μg/mL blasticidin (Sigma-Aldrich, Zwijndrecht, The Nether-

lands). All cell lines were grown at 37 ˚C in 5% CO2. HEK293 cells expressing human DAT,

NET, or SERT (kindly provided by Dr. Hoener from F. Hoffmann-La Roche Ltd., Basel, Swit-

zerland) were cultured as described previously [42, 48]. Briefly, transfected HEK cells were cul-

tured in T75 flasks (Thermo Fisher Scientific, Massachusetts) at 37 ˚C and 5% CO2. DMEM

high glucose (41965–039) was supplemented with 10% dialyzed fetal bovine serum (FBS), 2

mM L-glutamine, 1% 5,000 U/mL–5,000 μg/mL penicillin/streptomycin, 1 mM sodium pyru-

vate, 1% minimum essential medium non-essential amino acids solution (MEM-NEAA) solu-

tion, and 5 μL/mL geneticin selective antibiotic. Trypsin-EDTA (0.05%) was prepared by

diluting trypsin-EDTA (0.5%) in phosphate-buffered saline (PBS). All cell culture materials

were obtained from Gibco (Life Technologies, Breda, The Netherlands). Medium was

refreshed every 2–4 days, and cells were passaged at>80% confluence with the use of PBS and

trypsin-EDTA (0.05%) for up to 10 passages. The cell lines were routinely tested for myco-

plasma contamination.

Synthesized compounds and reagents

GuaHCl and (S)-fluoxetine were purchased from Sigma-Aldrich. GuaHCl was dissolved in

water at 2 M stock concentration, and all other compounds were dissolved in DMSO at 10

mM stock concentration. Neurobasal-A medium, penicillin–streptomycin (5,000 U/mL–

5,000 μg/mL), B27 plus supplement, N2 supplement, and l-glutamine are obtained from Life
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Technologies (Bleiswijk, The Netherlands). Polyethyleneimine (PEI) solution (50%), sodium

borate, boric acid, and all other chemicals (unless stated otherwise) are obtained from Sigma-

Aldrich (Zwijndrecht, The Netherlands). General chemical synthesize route and NMR spectra

of the compounds are listed in S1 Text.

Viruses

EV-A71 (strain BrCr), PV-1 (strain Sabin, ATCC), and the EV-D68 strains Fermon,

431100074, 4310901348, 4310902042, 4310900947, and 4310902284 were obtained from the

National Institute for Public Health and Environment (RIVM) in the Netherlands. HRV-2 and

HRV-14 were obtained from Joachim Seipelt from the Medical University of Vienna in Aus-

tria. CV-B3 (strain Nancy) was obtained by transfecting BGM cells with RNA transcripts

derived from the full-length infectious clones p53CB3/T7 as described by Wessels and col-

leagues [49]. EV-A71 clinical isolates TW/70811/08, TW/96016/08, TW/72232/04, TW/2639/

04, and TW/2728/04 were kindly provided by Johan Neyts of the REGA Institute for Medical

Research (KU Leuven, Belgium).

Resistance selection and phenotyping of resistant virus variants

We raised compound 13–resistant EV-A71, CV-B3, and EV-D68 viruses as described earlier

[30]. In short, the lowest concentration of 19d and the highest virus input that showed repro-

ducible inhibition of viral CPE was determined. Next, three 96-well plates containing HeLa

R19 cells were treated with the lowest determined compound concentration and the highest

virus input to select for viruses outgrowing the compound. CPE development was monitored

daily, and 3 days post infection, samples showing CPE were harvested after three freeze-thaw-

ing cycles. The harvested virus isolates were titrated in the presence of same concentration of

19d. After 3 days, the lysates of the highest virus dilution showing full CPE was harvested, and

the isolates were expanded in a 25 cm2 flask in the presence of 19d. In parallel, virus without

compound was taken along and used as a reference. The virus titers from the obtained virus

variants were determined by endpoint dilution, and the P2 and P3 regions were sequenced.

The resistance and cross-resistance phenotype of the virus variants was determined with a

multicycle viral replication assay.

Reverse engineering of resistance virus variants

The CV-B3 mutations 2C[C179F], 2C[C179Y], 2C[F190L], 2C[I227V], and 2C[A224V/I227V/

A229V] were previously introduced into the p53CB3/T7 infectious clone [24]. To obtain Rluc-

CV-B3 reporter viruses, which contains the Renilla luciferase gene upstream of the capsid cod-

ing region, the 2C mutations were cloned into pRLuc-53CB3/T7 using BssHII (nt 4239) and

XbaI (nt t4948) [50]. Mutations 2C[H243R] and 2C[F190L/H243R] were introduced into the

pRLuc-53CB3/T7 backbone with the Q5 site-directed mutagenesis kit (New England Biolabs,

Bioké, Leiden, The Netherlands). After site-directed mutagenesis, the plasmids were subjected

to Sanger sequencing to ensure the existence of the introduced mutation. Rluc-CV-B3 wild-

type and 2C mutant viruses were obtained by transfection of MluI-linearized plasmid DNA

into the Huh7-Lunet 7/T7 cells as described earlier [47, 50].

The EV-A71 mutations 2C[T133S], 2C[R151H], 2C[M193L], 2C[M193L/R151H], and 2C

[M193L/R151H/T133S] and the EV-D68 mutations 2C[V96M] and 2C[T196S] were intro-

duced into the pEV-A71 backbone (kindly provided by Johan Neyts) [51] and pRib-EVD68

Fermon [52], respectively, using the Q5 site-directed mutagenesis kit (New England Biolabs,

Bioké, Leiden, The Netherlands). After site-directed mutagenesis, the plasmids were subjected

to Sanger sequencing to ensure the existence of the introduced mutation. The corresponding
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primers used for side-directed mutagenesis of the aforementioned viruses are reported in S4

Table. To obtain virus, the plasmids were linearized with MluI, and RNA was in vitro tran-

scribed using the T7 RiboMAX Express Large Scale RNA production system (Promega, Lei-

den, The Netherlands) according to the manufacturer’s protocol and transfected into HeLa

R19 and RD cells. To ensure that the introduced mutations were retained in the generated

virus, viral RNA was isolated with the NucleoSpin RNA Virus kit (Macherey-Nagel, Leiden,

The Netherlands) according to the manufacturer’s protocol, and the presence of the desired

mutations was confirmed by Sanger sequencing. Virus titers were determined by endpoint

dilution titration and calculated according to the method of Reed and Muench and expressed

as 50% cell culture infective dose (CCID50) [53].

Single-cycle virus infection

Virus infections were performed by incubating subconfluent HeLa R19 cells with virus at the

indicated MOI at 37 ˚C for 30 minutes. Next, the inoculum was removed, and fresh control

medium or compound-containing medium was added to the cells. At the indicated time

points, cells were frozen. For measurements of infectious particles, virus was released from the

cells by three freeze-thawing cycles. Virus titers were determined by endpoint dilution assay

and calculated by the method of Reed and Muench and expressed as 50% tissue culture infec-

tious dose (TCID50) [53]. In the case of RLuc-CV-B3 infection, cells were lysed at the indicated

time points post infection, and the Renilla luciferase Assay System (Promega, Leiden, The

Netherlands) was used to determine the luciferase activity. Cell viability was determined in

parallel using the AQueous One Solution Cell Proliferation Assay (Promega, Leiden, The

Netherlands) according to the manufacturer’s protocol. Optical density at 490 nm was deter-

mined using a microplate reader.

Multicycle virus infection

Subconfluent layers of HeLa R19 cells were seeded in 96 wells and treated with serial dilutions

of the corresponding compounds. Cells were infected with viruses at the lowest possible MOI

resulting in full CPE within 3 days (MOI 0.001 for EV-A71, EV-A71 clinical isolates, CV-B3,

and PV-1; MOI 0.01 for CV-A24, CV-A24v, and HRV-14; MOI 0.1 for EV-D68, EV-D68 clini-

cal isolates, and HRV-2). Subsequently the cells were incubated at 37 ˚C for 3 days until full

CPE was observed in the virus-infected untreated cell controls. Cell viability was determined

using the AQueous One Solution Cell Proliferation Assay (Promega, Leiden, The Netherlands)

according to the manufacturer’s protocol. The optical density at 490 nm was determined using

a microplate reader. Raw OD values were converted to percentage of untreated and uninfected

cell control after subtraction of the background. The concentration of compound that inhibits

virus-induced cell death or expression of Renilla luciferase by 50% (EC50) was calculated by

nonlinear regression analysis with GraphPad Prism Version 6. We set the threshold for com-

pound activity at concentration of 10 μM or less since low μM range is typical for antivirals in

clinical use. Cytotoxicity of the compounds was assessed in a similar set-up, and CC50 values

were derived from cell viability values determined with an MTS assay.

Thermal shift assays

The DNA fragment encoding residues 116 to 329 of CV-B3 2C (strain Nancy) was cloned into

a pET28b plasmid, downstream of an N-terminal, and 3C protease cleavable, hexahistidine-

MBP tag. The F190L mutation was introduced using a Q5 site-directed mutagenesis kit (New

England Biolabs, Bioké, Leiden, The Netherlands). The recombinant WT protein, and F190L

variant, were produced in Escherichia coli RosettaTM 2 (DE3) (Sigma-Aldrich, Zwijndrecht,
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The Netherlands). When cultures reached OD600nm of 0.5, protein expression was induced

by the addition of 0.5 mM IPTG. Subsequently, protein was expressed for 16 h at 18 ˚C, with

shaking at 200 rpm. Further protein purification steps were performed essentially as described

previously [27], with the exception that TEV protease was replaced with 3C protease (Sigma-

Aldrich). The final size-exclusion chromatography step was performed at 4 ˚C with buffer con-

taining 25 mM Tris (pH 8), 300 mM NaCl, and 1 mM MgCl2, using a superose 6 increase 10/

300 column GL (GE Healthcare Life Science, Eindhoven, The Netherlands). The binding of

(S)-and (R)-fluoxetine and both 2b-enantiomers to WT CV-B3 2C, and the F190L variant, was

monitored by the fluorescence-based thermal shift assay using a Roche LightCycler480, as

described previously [27]. Each well of the thermal shift assay plates contained WT or F190L

2C protein (final concentration of 10 μM in 50 mM Tris, 300 mM NaCl, and 1 mM MgCl2

[pH 8]) and a SYPRO orange solution in concentrations recommended by the manufacturer,

in a final volume of 25 μL. All thermal shift assay experiments were performed using a temper-

ature gradient ranging from 20 ˚C to 90 ˚C (incremental steps of 0.2 ˚C/12 s). Protein denatur-

ation was monitored by following the increase of the fluorescence emitted by SYPRO orange,

which binds to exposed hydrophobic regions of the denatured protein. The mid-log of the

transition phase from the native to the denatured protein was used to calculate the melting

temperature (Tm). The reference unfolding temperature of proteins in 5% DMSO (T0) was

subtracted from the values in the presence of compounds (Tm) to obtain thermal shifts, ΔTm

= (Tm − T0).

Rat neuronal cell culture preparation for recording of neuronal activity

Primary rat cortical cells were isolated from PND0-1 Wistar rat pups as described previously

[54, 55]. Briefly, PND0-1 pups are decapitated, and cortices were rapidly dissected on ice and

were kept in serum-free dissection medium (Neurobasal-A supplemented with 25 g/L sucrose,

450 μM l-glutamine, 30 μM glutamate, 1% penicillin/streptomycin, and 2% B27 plus supple-

ment [pH 7.4]) during the entire procedure. Cortices were dissociated to a single-cell suspen-

sion by mincing with scissors, trituration, and filtering through a 100 μm mesh (EASYstrainer,

Greiner Bio-one, Solingen, Germany). The cell suspension was diluted to a 2 × 106 cells/mL

solution, after which droplets of 50 μL were placed on the electrode fields in wells of pre-coated

48-well MEA plates (Axion BioSystems, Atlanta, GA). All cell culture surfaces were pre-coated

with 0.1% PEI solution diluted in borate buffer (24 mM sodium borate/50 mM boric acid in

Milli-Q adjusted to pH 8.4). After plating, cells were left to adhere for approximately 2 hours

before adding 450 μL serum-free dissection medium. Rat primary cortical cells were main-

tained at 37 ˚C in a humidified 5% CO2 incubator. At DIV4, 90% of the serum-free dissection

medium was replaced with serum-free culture medium (Neurobasal-A supplemented with 25

g/L sucrose, 450 μM l-glutamine, 1% penicillin/streptomycin, and 2% B27 plus supplement

[pH 7.4]). Rat primary cortical neurons were used for neurotoxicity assessment at DIV15.

MEA recordings of spontaneous neuronal activity in rat primary cortical

cultures

Each well of a 48-well MEA plate contains 16 nanotextured gold micro-electrodes (approxi-

mately 40–50 μm diameter; 350 μm spacing) with 4 integrated ground electrodes, yielding a

total of 768 channels for simultaneous recording (for review see [43]). Spontaneous electrical

activity was recorded as described previously [54, 55] (S3 Fig). Briefly, signals were recorded at

the day of experiments (DIV15) using a Maestro 768-channel amplifier with integrated heating

system, temperature controller, and a data acquisition interface (Axion BioSystems, Atlanta,

GA). Data acquisition was managed with Axion’s Integrated Studio (AxIS version 2.4.2.13)
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and recorded as .RAW files. All channels were sampled simultaneously with a gain of 1,200×
and a sampling frequency of 12.5 kHz/channel, using a 200–5,000 Hz band-pass filter.

Prior to the recording, MEA plates were allowed to equilibrate for 5–10 minutes in the

Maestro. Following a 30-minute baseline recording, wells were exposed to the test compounds

or the DMSO control, and activity was recorded for another 30 minutes to determine the

acute effects of test compounds on neuronal activity. Stock solutions of compounds dissolved

in DMSO (10 mM) were diluted (1:100) in serum-free culture medium to obtain 100 μM solu-

tions, which were used for exposure of cells in the MEA (dilution 1:10; final concentration

10 μM/0.1% DMSO). In order to prevent receptor (de)sensitization, each well was exposed

only to a single concentration.

To determine (modulation of) spontaneous activity, RAW data files were re-recorded to

obtain Alpha Map files for further data analysis. In this re-recording, spikes were detected

using the AxIS spike detector (Adaptive threshold crossing, Ada BandFIt version 2) with a var-

iable threshold spike detector set at 7× SD of internal noise level (rms) on each electrode. Post/

pre-spike duration was set to 3.6/2.4 ms. For further data analysis, spike files were loaded in

NeuralMetric Tool (version 2.2.4, Axion BioSystems). Only active electrodes (MSR� 6 spikes/

min) in active wells (�1 active electrode) were included in the data analysis. The (network)

bursting behavior was analyzed using the Poisson Surprise method [56] with a minimal sur-

prise of 10 and a minimum bursting frequency of 0.3 bursts/min. Network bursts were

extracted with the adaptive threshold algorithm. Effects of test compounds on the spontaneous

activity pattern were determined by comparing activity during exposure to baseline activity.

To prevent inclusion of exposure artefacts, the window of 20–30 minutes post exposure was

used for analysis of effects. A custom-made Microsoft Excel macro was used to calculate treat-

ment ratios (TRs) per well for the different metric parameters (MSR, MBR, and MNBR) by:

(parameterexposure/parameterbaseline) × 100%. Hereafter, TRs will be normalized to DMSO con-

trol. Wells that show effects 2× SD above or below average were considered outliers (5.1%) and

were removed for further data analysis.

Inhibition of uptake by monoamine transporters

Uptake activity of hNET, hDAT, and hSERT was measured using the Neurotransmitter Trans-

porter Uptake Assay Kit from MDS Analytical Technologies (Sunnyvale, CA) as described pre-

viously [42, 48]. Briefly, the kit contained a mix consisting of a fluorescent substrate, which

resembles the biogenic amine neurotransmitters, and a masking dye that extinguishes extracel-

lular fluorescence. The fluorescent substrate solution was prepared by dissolving the mix in

HBSS according to the manufacturer’s instructions and stored at −18 ˚C for a maximum of 4

days. Uptake of the fluorescent substrate increases intracellular fluorescence, while extracellu-

lar fluorescence is blocked by the masking dye (Fig 8) [57].

On day 0, HEK 293 cells were seeded at a density of approximately 60,000 cells/well in

clear-bottom, black-walled, 96-well plates (Greiner Bio-one, Solingen Germany) coated with

PLL buffer (50 mg/L). Cells were allowed to proliferate overnight in a humidified 5% CO2/95%

air atmosphere at 37 ˚C. Experiments were performed the next day (day 1). Cells were pre-

incubated with the fluorescent substrate for 12 minutes (t = −12 to t = 0) prior to a 30-minute

drug exposure. Culture medium was replaced by 100 μL/well fluorescent substrate solution,

and uptake measurements were started. At t = 0, 100 μL/well HBSS with 0.1% DMSO (control)

or with test compound (final concentration 1–100 μM) was added to each well, and uptake

was measured continuously for 30 minutes. Background wells were pre-incubated with

100 μL/well HBSS without fluorescent substrate solution and exposed at t = 0 min to 100 μL/

well HBSS.
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Fluorescence was recorded every 3 minutes, starting directly after addition of the fluores-

cent substrate solution (t = −12) using a microplate reader (Tecan Infinite M200 microplate;

Tecan Trading Männedorf, Switzerland) at 37 ˚C at 430/515 nm excitation/emission wave-

length in bottom-reading mode using optimal gain values for each cell type (number of cycles:

21; time interval: 3 minutes; number of flashes: 19; integration time: 20 μs, no lid). Cell attach-

ment was visually examined following experiments.

The fluorescence of each well was background corrected (time- and plate-matched). First,

uptake of the fluorescent substrate was first determined per well by calculating the change in

fluorescence (ΔFU) at 12 minutes after exposure to the test compound (t = 12) compared to

the fluorescence prior to exposure (i.e., the fluorescence following 12-minute pre-incubation

with the fluorescent substrate at t = 0), as a percentage of the fluorescence prior to exposure.

Second, the percentage uptake in control wells of all plates was averaged, and wells that showed

values 2× SD above or below average were considered outliers and were excluded from further

analysis. Uptake in compound-exposed wells was expressed as a percentage of control wells,

outliers in exposed groups (effects 2× SD above or below average) were removed (approxi-

mately 1%), and all uptake values were scaled between 0% and 100%.

Prediction of solvent accessible tunnels

For prediction of solvent accessible tunnels, we used the crystal structure of EV-A71 2C PDB:

5GRB/Chain B and PV 2C PDB 5Z3Q/Chain A. As a starting point for the tunnel prediction,

the amino acid of 2C of EV-A71 M193 and PV-1 2C F164—N179 and M187, respectively—

were used. We used the MOLEonline web interface [40], CAVER 3.0PyMol plugin [58], and

CASTp [59] to generate solvent accessible tunnels or surfaces [40, 58, 59]. Figures were gener-

ated using UCSF Chimera and PyMol (The PYMOL Molecular Graphics system Version

234932948 Schrödinger, LLC).

Statistical analysis

Each experiment was performed at least in technical duplicates, and all experiments were per-

formed in biological triplicates. Statistical significance of the MEA data and transporter inhibi-

tion was determined using one-way ANOVA and, if applicable, a post hoc Tukey test. P� 0.05

was considered significant. Statistical analysis, nonlinear regression, and the graphs were made

with GraphPad Prism Version 6 or R version 3.6.0 (R core team 2019).

Supporting information

S1 Text. Detailed description of synthesis of compound 1 analouges and corresponding

NMR spectra.

(DOCX)

S1 Data. Raw experimental data of Tables 1–4 and S1–S3 Tables.

(XLSX)

S2 Data. Raw experimental data of Figs 2–8 and S4 Fig.

(XLSX)

S1 Table. Antiviral activity of the furan amide moiety analogues against CV-B3. Multicycle

viral replication assays were performed in HeLa R19 cells, and shown are EC50 and CC50 values

in μM. Data represent mean ± SD calculated from two different experiments both performed

in biological triplicates. All underlying experimental data are displayed in S1 Data.

(DOCX)
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S2 Table. Antiviral activity of the N-benzylaniline moiety analogues against CV-B3. Multi-

cycle viral replication assays were performed in HeLa R19 cells, and shown are EC50 and CC50

values in μM. Data represents mean ± SD calculated from two different experiments both per-

formed in biological triplicates. All underlying experimental data are displayed in S1 Data.

(DOCX)

S3 Table. Antiviral efficacy against CV-B3 and cytotoxicity of the active compounds in dif-

ferent cell lines. Multicycle viral replication assay was performed in HeLa R19, HAP1, and

BGM cells. Shown are EC50 and CC50 values in μM. Data represent mean ± SD calculated

from two independent experiments both performed in biological triplicates. SI = selectivity

index (CC50/EC50). All underlying experimental data are displayed in S1 Data.

(XLSX)

S4 Table. Primers used for site-directed mutagenesis. Primers used for introducing muta-

tions in CV-B3, EV-A71, and EV-D68. Mutations introduced are shown in small characters in

the primer sequence.

(XLSX)

S1 Fig. Synthesis routes of compound 1 analogues to explore the furan ring and the

amide bond. Synthetic route a): (i) NaBH4, MeOH/THF (4:1), rt, 6 h, quantitative; (ii) Com-

pounds 5a–5d: corrisponding acyl chloride or sulphonyl chloride, TEA, DCM, rt, 3h, 63%–

98%; Compounds 1, 5e–f: corrisponding carboxylic acids, TBTU, DIPEA, DMF, rt, on, 37%–

69%; Compounds 5g: Na(AcO)3BH, MeOH, rt, on, 30%; (iii) 2-bromoacetyl chloride, TEA,

DCM, rt, 1h, 68%; (iv) methylamine, EtOH, rt, on, 66%; Synthetic route b): (i) K2CO3, benzyl

bromide, DMF, rt, 18h 68%; (ii) Boc, DMAP, TEA, THF, rt, 18h, 90%; (iii) Pd/C 10%, H2

atmosphere, EtOAc/MeOH (1:1, rt, 20h, 93%; (iv) compound 4 or compound 18b, TBTU,

DIPEA, DMF, 45 ˚C, 48–72h, 79%–45%; (v) DCM/TFA (1:1), rt, 4h, 91%–89%. Synthetic

route c): (i) NaBH4, MeOH/THF (4:1), rt, 6 h, 88%; (ii) 4-fluorobenzoyl chloride, TEA,

DCM, rt, 3h, quantitative.

(TIF)

S2 Fig. Synthesis routes of compound 1 analogues to explore the 4-positions of the N-ben-

zyl aniline moiety. (i) NaBH4, MeOH/THF (4:1), rt, 6 h, 40%–99%; (ii) furan-2-carbonyl

chloride, TEA, DCM, rt, 3 h, Y = 56%–99%; (iii) thionyl chloride, DCM, reflux, 2h; (iv) com-

pound 18d, TEA, DCM, rt, 3h, 75%.

(TIF)

S3 Fig. Structure-based multiple sequence alignment of 2C proteins. Multiple sequence

alignment of EV-A71 (strain BrCr), CV-B3 (strain Nancy), PV (strain Sabin), and EV-D68

(strain Fermon) was performed with Clustal Omega. Invariant amino acids are highlighted in

red. Secondary structural elements are shown on top of the alignment and are based on the

EV-A71 crystal structure (PDB: 5GRB). Functional motifs are indicated in black. The green

box indicates resistance mutations which are located at or close by the α2 helix. The yellow

boxes highlight distal mutations.

(TIF)

S4 Fig. In silico prediction of a possible binding pocket around the α2 helix of 2C. The

mole online version (40) was used to calculate solvent exposed tunnels in 2C of PV-1 (PDB:

5z3Q) from different starting points. (A) The starting point for calculation was the amino acid

F164, and in (B) the starting point for the tunnel prediction was N179. The Pymol plug-in

CAVER 3.0.3 was used to calculate solvent accessible tunnel in the nonstructural protein 2C

(58). (A) The EV-A71 2C crystal structure PDB: 5GRB, chain B was used. The amino acid
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M193 in the α2 helix of 2C is depicted in green and represents the starting point to identify sol-

vent accessible tunnels. The identified tunnels are shown red, blue, green, and yellow. (B) For

PV, the 2C crystal structure 5Z3Q, chain B was used to identify solvent accessible tunnels

using the amino acid M187 as starting point. The identified tunnels are depicted in red, green,

and blue. The CASTp online tool was used to predict cavities on the protein surfaces of the 2C

nonstructural proteins of (C) EV-A71 and (D) PV (59). The cavities are highlighted in blue.

(TIF)

S5 Fig. Overview of the microelectrode array. (A) Schematic overview of the microelectrode

array (MEA) recordings used to measure changes in neuronal activity. Photographs of the

Maestro 768-channel amplifier (A) and 48-well MEA plate (B). Each well contains 16 nanotex-

tured gold micro-electrodes on top of which neuronal cells can be cultures for recording of

spontaneous electrical activity (C). Baseline activity recorded before exposure (D, left) is com-

pared to activity following exposure to a (inhibitory) test compound (D, right) to determine a

TR that describes the changes in neuronal activity due to exposure to the test compounds.

Modified after Tukker and colleagues, 2016 [55]. TR, treatment ratio.

(TIF)

S6 Fig. Modulation of spontaneous neuronal activity anti-EV inhibitors. (A) Modulation of

spontaneous neuronal activity by fluoxetine. Concentration–response curves for inhibition of

MSR (left), MBR (middle), and MNBR (right) following acute exposure to fluoxetine. Neuro-

nal activity is depicted as the mean TR ± SEM as percent of control (DMSO) wells (n = 12–16

wells, derived from 2 independent cultures, �P< 0.05). (B) Modulation of spontaneous neuro-

nal activity by fluoxetine and antiviral compounds. When tested at a single, high concentration

(10 μM), fluoxetine induced a profound inhibition of MSR (left), MBR (middle), and MNBR

(right), whereas the antiviral compounds 12a, 12b, 19b, and 19d were without effect. Neuronal

activity is depicted as the mean TR ± SEM as percent of control (DMSO) wells (n = 8–16 wells,

derived from 2 independent cultures, �P< 0.05). All underlying experimental data that are dis-

played can be found in S2 Data. TR, treatment ratio.

(TIF)
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