65 research outputs found
Reverberation Mapping and the Physics of Active Galactic Nuclei
Reverberation-mapping campaigns have revolutionized our understanding of AGN.
They have allowed the direct determination of the broad-line region size,
enabled mapping of the gas distribution around the central black hole, and are
starting to resolve the continuum source structure. This review describes the
recent and successful campaigns of the International AGN Watch consortium,
outlines the theoretical background of reverberation mapping and the
calculation of transfer functions, and addresses the fundamental difficulties
of such experiments. It shows that such large-scale experiments have resulted
in a ``new BLR'' which is considerably different from the one we knew just ten
years ago. We discuss in some detail the more important new results, including
the luminosity-size-mass relationship for AGN, and suggest ways to proceed in
the near future.Comment: Review article to appear in Astronomical Time Series, Proceedings of
the Wise Observatory 25th Ann. Symposium. 24 pages including 7 figure
Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies
The high selectivity of the human blood-brain barrier (BBB) restricts delivery of many pharmaceuticals and therapeutic antibodies to the central nervous system. Here, we describe an in vitro microfluidic organ-on-a-chip BBB model lined by induced pluripotent stem cell-derived human brain microvascular endothelium interfaced with primary human brain astrocytes and pericytes that recapitulates the high level of barrier function of the in vivo human BBB for at least one week in culture. The endothelium expresses high levels of tight junction proteins and functional efflux pumps, and it displays selective transcytosis of peptides and antibodies previously observed in vivo. Increased barrier functionality was accomplished using a developmentally-inspired induction protocol that includes a period of differentiation under hypoxic conditions. This enhanced BBB Chip may therefore represent a new in vitro tool for development and validation of delivery systems that transport drugs and therapeutic antibodies across the human BBB
Fast Coding of Orientation in Primary Visual Cortex
Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple ‘race to threshold’ readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made
Production of dust by massive stars at high redshift
The large amounts of dust detected in sub-millimeter galaxies and quasars at
high redshift pose a challenge to galaxy formation models and theories of
cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun)
are sufficiently short-lived to be potential stellar sources of dust. This
review is devoted to identifying and quantifying the most important stellar
channels of rapid dust formation. We ascertain the dust production efficiency
of stars in the mass range 3-40 Msun using both observed and theoretical dust
yields of evolved massive stars and supernovae (SNe) and provide analytical
expressions for the dust production efficiencies in various scenarios. We also
address the strong sensitivity of the total dust productivity to the initial
mass function. From simple considerations, we find that, in the early Universe,
high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust
producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they
are more efficient. We address the challenges in inferring dust masses and
star-formation rates from observations of high-redshift galaxies. We conclude
that significant SN dust production at high redshift is likely required to
reproduce current dust mass estimates, possibly coupled with rapid dust grain
growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and
Astrophysics Revie
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Defect-induced magnetism in chemically synthesized nanoscale sheets of MgO
Highly defective MgO nanosheets were prepared by a colloidal synthesis and exhibited low-temperature ferromagnetism which was significantly larger that the magnetization potentially obtainable from the low transition-metal impurity concentration. Electron paramagnetic resonance experiments confirmed that the magnetization did not significantly involve impurities and that the nanosheets consisted of strongly interacting spin clusters which disappeared upon high-temperature annealing. These spins were concentrated along extended defects, possibly as unpaired electrons trapped at oxygen vacancies
Highly defective MgO nanosheets from colloidal self-assembly
Highly defective magnesium oxide nanosheets were synthesized using a colloidal synthesis in which magnesium ethoxide was thermally decomposed in high-boiling-point weakly coordinating solvents. The nanosheets were assembled of small nanocrystal building blocks by oriented attachment. This assembly could be inhibited by using a strongly coordinating surfactant, such as oleic acid. The 2-3 nm spaced extended defects formed at the grain boundaries make up a material with a record defect density which causes an increased conductivity and dielectric constant, strong luminescence and paramagnetism. The point defect type prevailing at those interfaces is apparently charged oxygen vacancies. In situ TEM annealing experiments showed that the extended defects begin to anneal out at temperatures as low as 300 degrees C, but a high density of point defects apparently survives even at 750 degrees C
Representative decision making: constituency constraints on collective action
This chapter focuses on the role of group and national identity in various types of collective actions. It features the decision to take action and asks about factors that influence that decision. Thus, our perspective is from the standpoint of the decision-maker who usually represents a collectivity (group, organization, nation). The interest is less about those decision-makers’ own identities and attachments than about various drivers and constraints on their decisions to act
- …