47 research outputs found

    Effect of Flexible Membrane in Triaxial Test on the Mechanical Behaviour of Rockfill Material using Discrete Element Method

    Get PDF
    The investigation of rockfill materials poses challenges due to their large particle size, associated high cost, and long laboratory testing duration. As a result, empirical correlations based on historical experimental studies are commonly used to design and analyse rockfill structures. However, the extensive use of rockfill in a wide range of applications and limited understanding of its mechanical behaviour emphasize the need for further research. These make it necessary to develop a robust technique capable of capturing key parameters such as particle shape and breakage, allowing for the simulation and study of large-scale assemblies with realistic boundary conditions. Given that the behaviour of rockfill is highly scale-dependent, primarily due to particle breakage, the simplified laboratory tests on the scaled-down assemblies can be misleading. Particle breakage is a fundamental phenomenon in the mechanical behaviour of rockfill and significantly affects shear strength, deformability, and porosity under different stress levels. The particle breakage is influenced by factors such as the rockfill’s maximum particle size, mineralogy, particle shape, gradation, and confining stresses. This study adopts a computationally efficient breakage method called the Modified Particle Replacement Method (MPRM) based on the Discrete Element Method. A Tile-Based Flexible Membrane (TBFM) for triaxial test modelling has been developed by employing segmental rectangular walls to create a deformable membrane. The effects of critical parameters, including particle shape, confining stress, membrane resolution, degree of flexibility, and the characteristic strength of the particles, are examined. The findings of the combined MPRM-TBFM approach demonstrate the significant influence of membrane flexibility on volumetric-related behaviour

    Effect of Flexible Membrane in Triaxial Test on the Mechanical Behaviour of Rockfill Material using Discrete Element Method

    Get PDF
    The investigation of rockfill materials poses challenges due to their large particle size, associated high cost, and long laboratory testing duration. As a result, empirical correlations based on historical experimental studies are commonly used to design and analyse rockfill structures. However, the extensive use of rockfill in a wide range of applications and limited understanding of its mechanical behaviour emphasize the need for further research. These make it necessary to develop a robust technique capable of capturing key parameters such as particle shape and breakage, allowing for the simulation and study of large-scale assemblies with realistic boundary conditions. Given that the behaviour of rockfill is highly scale-dependent, primarily due to particle breakage, the simplified laboratory tests on the scaled-down assemblies can be misleading. Particle breakage is a fundamental phenomenon in the mechanical behaviour of rockfill and significantly affects shear strength, deformability, and porosity under different stress levels. The particle breakage is influenced by factors such as the rockfill’s maximum particle size, mineralogy, particle shape, gradation, and confining stresses. This study adopts a computationally efficient breakage method called the Modified Particle Replacement Method (MPRM) based on the Discrete Element Method. A Tile-Based Flexible Membrane (TBFM) for triaxial test modelling has been developed by employing segmental rectangular walls to create a deformable membrane. The effects of critical parameters, including particle shape, confining stress, membrane resolution, degree of flexibility, and the characteristic strength of the particles, are examined. The findings of the combined MPRM-TBFM approach demonstrate the significant influence of membrane flexibility on volumetric-related behaviour

    Particle swarm optimization on threshold exponential gain of stimulated Brillouin scattering in single mode fibers.

    Get PDF
    We implement a particle swarm optimization (PSO) algorithm to characterize stimulated Brillouin scattering phenomena in optical fibers. The explicit and strong dependence of the threshold exponential gain on the numerical aperture, the pump laser wavelength and the optical loss coefficient are presented. The proposed PSO model is also evaluated with the localized, nonfluctuating source model and the distributed (non-localized) fluctuating source model. Using our model, for fiber lengths from 1 km to 29 km, the calculated threshold exponential gain of stimulated Brillouin scattering is gradually decreased from 17.4 to 14.6 respectively. The theoretical results of Brillouin threshold power predicted by the proposed PSO model show a good agreement with the experimental results for different fiber lengths from 1 km to 12 km

    Safety and efficacy of Favipiravir in moderate to severe SARS-CoV-2 pneumonia

    Get PDF
    Background: We examined the safety and efficacy of a treatment protocol containing Favipiravir for the treatment of SARS-CoV-2. Methods: We did a multicenter randomized open-labeled clinical trial on moderate to severe cases infections of SARS-CoV-2. Patients with typical ground glass appearance on chest computerized tomography scan (CT scan) and oxygen saturation (SpO2) of less than 93 were enrolled. They were randomly allocated into Favipiravir (1.6 gr loading, 1.8 gr daily) and Lopinavir/Ritonavir (800/200 mg daily) treatment regimens in addition to standard care. In-hospital mortality, ICU admission, intubation, time to clinical recovery, changes in daily SpO2 after 5 min discontinuation of supplemental oxygen, and length of hospital stay were quantified and compared in the two groups. Results: 380 patients were randomly allocated into Favipiravir (1 9 3) and Lopinavir/Ritonavir (1 8 7) groups in 13 centers. The number of deaths, intubations, and ICU admissions were not significantly different (26, 27, 31 and 21, 17, 25 respectively). Mean hospital stay was also not different (7.9 days SD = 6 in the Favipiravir and 8.1 SD = 6.5 days in Lopinavir/Ritonavir groups) (p = 0.61). Time to clinical recovery in the Favipiravir group was similar to Lopinavir/Ritonavir group (HR = 0.94, 95% CI 0.75 � 1.17) and likewise the changes in the daily SpO2 after discontinuation of supplemental oxygen (p = 0.46) Conclusion: Adding Favipiravir to the treatment protocol did not reduce the number of ICU admissions or intubations or In-hospital mortality compared to Lopinavir/Ritonavir regimen. It also did not shorten time to clinical recovery and length of hospital stay. © 2021 Elsevier B.V

    Mapping 123 million neonatal, infant and child deaths between 2000 and 2017

    Get PDF
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2—to end preventable child deaths by 2030—we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000–2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019

    Mapping child growth failure across low- and middle-income countries

    Get PDF
    Child growth failure (CGF), manifested as stunting, wasting, and underweight, is associated with high 5 mortality and increased risks of cognitive, physical, and metabolic impairments. Children in low- and middle-income countries (LMICs) face the highest levels of CGF globally. Here we illustrate national and subnational variation of under-5 CGF indicators across LMICs, providing 2000–2017 annual estimates mapped at a high spatial resolution and aggregated to policy-relevant administrative units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the World Health 10 Organization’s ambitious Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and rates of progress exist across regions, countries, and within countries; our maps identify areas where high prevalence persists even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where subnational disparities exist and the highest-need populations reside, these geospatial estimates can support policy-makers in planning locally 15 tailored interventions and efficient directing of resources to accelerate progress in reducing CGF and its health implications

    Mapping disparities in education across low- and middle-income countries

    Get PDF
    Analyses of the proportions of individuals who have completed key levels of schooling across all low- and middle-income countries from 2000 to 2017 reveal inequalities across countries as well as within populations. Educational attainment is an important social determinant of maternal, newborn, and child health(1-3). As a tool for promoting gender equity, it has gained increasing traction in popular media, international aid strategies, and global agenda-setting(4-6). The global health agenda is increasingly focused on evidence of precision public health, which illustrates the subnational distribution of disease and illness(7,8); however, an agenda focused on future equity must integrate comparable evidence on the distribution of social determinants of health(9-11). Here we expand on the available precision SDG evidence by estimating the subnational distribution of educational attainment, including the proportions of individuals who have completed key levels of schooling, across all low- and middle-income countries from 2000 to 2017. Previous analyses have focused on geographical disparities in average attainment across Africa or for specific countries, but-to our knowledge-no analysis has examined the subnational proportions of individuals who completed specific levels of education across all low- and middle-income countries(12-14). By geolocating subnational data for more than 184 million person-years across 528 data sources, we precisely identify inequalities across geography as well as within populations.Peer reviewe

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore