18 research outputs found

    Nuclear survivin expression is a positive prognostic factor in taxane-platinum-treated ovarian cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survivin is an inhibitor of apoptosis and a regulator of mitotic progression. TP53 protein is a negative transcriptional regulator of survivin. The aim of our study was to evaluate the clinical significance of survivin expression in advanced stages ovarian cancer with respect to the TP53 status.</p> <p>Methods</p> <p>Survivin and TP53 expression was evaluated immunohistochemically in 435 archival samples of ovarian carcinomas (244 patients were treated with platinum/cyclophosphamide-PC/PAC; 191-with taxane-platinum (TP) agents). Univariate and multivariate statistical analyses were performed in patients groups divided according to the administered chemotherapeutic regimen, and in subgroups with and without TP53 accumulation (TP53+ and TP53-, respectively).</p> <p>Results</p> <p>Nuclear and cytoplasmic survivin expression was observed in 92% and 74% of the carcinomas, respectively. In patients treated with TP, high nuclear survivin expression decreased the risk of disease recurrence and death, and increased the probability of high platinum sensitivity (p < 0.01), but only in the TP53(+) group, and not in the TP53(-) group.</p> <p>Conclusions</p> <p>It appears that TP53 status determines the clinical importance of nuclear survivin expression in taxane-platinum treated ovarian cancer patients.</p

    Genotyping of human papillomavirus DNA in Wielkopolska region

    Get PDF
    Objectives: Human papillomavirus infection is one of the most common sexually transmitted diseases. Long-term exposure to the HPV leads to development of high-grade squamous intraepithelial lesions that can eventually transform into cervical cancer. The aim of the study was to assess the HPV genotype distribution in patients with abnormal pap smear and provide prospective study. Material and methods: We obtained material from 674 women who registered to Specialist Medical Practice in the years 2008–2020. The sample for the molecular test was collected using combi brush and forwarded to the independent, standardized laboratory. HPV detection was done using PCR followed by DNA enzyme immunoassay and reverse hybridization line probe assay for virus genotyping. Sequence analysis was performed to characterize virus genotypes in HPV — positive samples. Results: We found that 53% of patients tested positive for HPV. The percentage decreased with age. The following HPV types were the most common: HPV — 16 (24.5%), HPV — 53 (13.1%), HPV — 31 (10.3%), HPV — 51 (9.7%), HPV — 56 (9.5%). To our knowledge, this study is the largest assessment of HPV genotypes in Poland. Conclusions: Our results suggest that type-specific, high–risk HPV DNA — based screening should focus on HPV types 16, 31, 51, 56

    Maintenance olaparib in patients with platinum-sensitive relapsed ovarian cancer: Outcomes by somatic and germline BRCA and other homologous recombination repair gene mutation status in the ORZORA trial

    Full text link
    Background. The open-label, single-arm, multicenter ORZORA trial (NCT02476968) evaluated the efficacy and safety of maintenance olaparib in patients with platinum-sensitive relapsed ovarian cancer (PSR OC) who had tumor BRCA mutations (BRCAm) of germline (g) or somatic (s) origin or non-BRCA homologous recombination repair mutations (HRRm) and were in response to their most recent platinum-based chemotherapy after >= 2 lines of treatment. Methods. Patients received maintenance olaparib capsules (400 mg twice daily) until disease progression. Prospective central testing at screening determined tumor BRCAm status and subsequent testing determined gBRCAm or sBRCAm status. Patients with predefined non-BRCA HRRm were assigned to an exploratory cohort

    Avelumab Alone or in Combination With Chemotherapy Versus Chemotherapy Alone in Platinum-Resistant or Platinum-Refractory Ovarian Cancer (JAVELIN Ovarian 200): An Open-Label, Three-Arm, Randomised, Phase 3 Study

    Get PDF
    The majority of patients with ovarian cancer will experience relapse and develop platinum-resistant disease after being treated with frontline platinum-based chemotherapy. Treatment options for platinum-resistance or platinum-refractory disease are very limited, usually involving nonplatinum chemotherapy, and they are associated with poor objective response rates and life expectancy

    TP53 status and taxane-platinum versus platinum-based therapy in ovarian cancer patients: A non-randomized retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Taxane-platinum therapy (TP) has replaced platinum-based therapy (PC or PAC, DNA damaging chemotherapy) in the postoperative treatment of ovarian cancer patients; however, it is not always effective. TP53 protein plays a differential role in response to DNA-damaging agents and taxanes. We sought to define profiles of patients who benefit the most from TP and also of those who can be treated with PC.</p> <p>Methods</p> <p>We compared the effectiveness of PC/PAC (n = 253) and TP (n = 199) with respect to tumor TP53 accumulation in ovarian cancer patients with FIGO stage IIB-IV disease; this was a non-randomized retrospective study. Immunohistochemical analysis was performed on 452 archival tumors; univariate and multivariate analysis by the Cox's and logistic regression models was performed in all patients and in subgroups with [TP53(+)] and without TP53 accumulation [TP53(-)].</p> <p>Results</p> <p>The advantage of taxane-platinum therapy over platinum-based therapy was seen in the TP53(+), and not in the TP53(-) group. In the TP53(+) group taxane-platinum therapy enhanced the probability of complete remission (p = .018), platinum sensitivity (p = .014), platinum highly sensitive response (p = .038) and longer survival (OS, p = .008). Poor tumor differentiation diminished the advantage from taxane-platinum therapy in the TP53(+) group. In the TP53(-) group PC/PAC was at least equally efficient as taxane-platinum therapy and it enhanced the chance of platinum highly sensitive response (p = .010). However, in the TP53(-) group taxane-platinum therapy possibly diminished the risk of death in patients over 53 yrs (p = .077). Among factors that positively interacted with taxane-platinum therapy in some analyses were endometrioid and clear cell type, FIGO III stage, bulky residual tumor, more advanced age of patient and moderate tumor differentiation.</p> <p>Conclusion</p> <p>Our results suggest that taxane-platinum therapy is particularly justified in patients with TP53(+) tumors or older than 53 years. In the group of patients ≤53 yrs and with TP53(-) tumors platinum-based therapy is possibly equally efficient. We provide hints for planning randomized trials to verify these observations.</p

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : A systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (≥65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0–100 based on the 2·5th and 97·5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target—1 billion more people benefiting from UHC by 2023—we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings Globally, performance on the UHC effective coverage index improved from 45·8 (95% uncertainty interval 44·2–47·5) in 1990 to 60·3 (58·7–61·9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2·6% [1·9–3·3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010–2019 relative to 1990–2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0·79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388·9 million (358·6–421·3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3·1 billion (3·0–3·2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968·1 million [903·5–1040·3]) residing in south Asia. Interpretation The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people—the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close—or how far—all populations are in benefiting from UHC

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens
    corecore