185 research outputs found

    The first 62 AGN observed with SDSS-IV MaNGA - IV: gas excitation and star-formation rate distributions

    Get PDF
    We present maps of the ionized gas flux distributions, excitation, star-formation rate SFR, surface mass density ΣH+\Sigma_{H+}, and obtain total values of SFR and ionized gas masses {\it M} for 62 Active Galactic Nuclei (AGN) observed with SDSS-IV MaNGA and compare them with those of a control sample of 112 non-active galaxies. The most luminous AGN -- with L(\rm{[OIII]}\lambda 5007) \ge 3.8\times 10^{40}\,\mbox{erg}\,\mbox{s}^{-1}, and those hosted by earlier-type galaxies are dominated by Seyfert excitation within 0.2 effective radius ReR_e from the nucleus, surrounded by LINER excitation or transition regions, while the less luminous and hosted by later-type galaxies show equally frequent LINER and Seyfert excitation within 0.2Re0.2\,R_e. The extent RR of the region ionized by the AGN follows the relation RL([OIII])0.5R\propto\,L(\rm{[OIII]})^{0.5} -- as in the case of the Broad-Line Region. The SFR distribution over the region ionized by hot stars is similar for AGN and controls, while the integrated SFR -- in the range 1031010^{-3}-10\,M_\odot\,yr1^{-1} is also similar for the late-type sub-sample, but higher in the AGN for 75\% of the early-type sub-sample. We thus conclude that there is no signature of AGN quenching star formation in the body of the galaxy in our sample. We also find that 66\% of the AGN have higher ionized gas masses MM than the controls -- in the range 1053×107^5-3\times10^7\,M_\odot -- while 75\% of the AGN have higher ΣH+\Sigma_{H+} within 0.2Re0.2\,R_e than the control galaxies

    The first 62 AGN observed with SDSS-IV MaNGA -- III: stellar and gas kinematics

    Get PDF
    We investigate the effects of Active Galactic Nuclei (AGN) on the gas kinematics of their host galaxies, using MaNGA data for a sample of 62 AGN hosts and 109 control galaxies (inactive galaxies). We compare orientation of the line of nodes (kinematic Position Angle - PA) measured from the gas and stellar velocity fields for the two samples. We found that AGN hosts and control galaxies display similar kinematic PA offsets between gas and stars. However, we note that AGN have larger fractional velocity dispersion σ\sigma differences between gas and stars [σfrac=(σgasσstars)/σstars\sigma_{frac}=(\sigma_{\rm gas}-\sigma_{stars})/\sigma_{\rm stars}] when compared to their controls, as obtained from the velocity dispersion values of the central (nuclear) pixel (2.5" diameter). The AGN have a median value of σfrac\sigma_{\rm frac} of AGN=0.04_{\rm AGN}=0.04, while the the median value for the control galaxies is CTR=0.23_{\rm CTR}=-0.23. 75% of the AGN show σfrac>0.13\sigma_{frac}>-0.13, while 75% of the normal galaxies show σfrac<0.04\sigma_{\rm frac}<-0.04, thus we suggest that the parameter σfrac\sigma_{\rm frac} can be used as an indicative of AGN activity. We find a correlation between the [OIII]λ\lambda5007 luminosity and σfrac\sigma_{frac} for our sample. Our main conclusion is that the AGN already observed with MaNGA are not powerful enough to produce important outflows at galactic scales, but at 1-2 kpc scales, AGN feedback signatures are always present on their host galaxies.Comment: 19 pages, 8 figures, published in MNRA

    Gas phase metallicity determinations in nearby AGNs with SDSS-IV MaNGA: evidence of metal poor accretion

    Get PDF
    We derive the metallicity (traced by the O/H abundance) of the Narrow Line Region ( NLR) of 108 Seyfert galaxies as well as radial metallicity gradients along their galaxy disks and of these of a matched control sample of no active galaxies. In view of that, observational data from the SDSS-IV MaNGA survey and strong emission-line calibrations taken from the literature were considered. The metallicity obtained for the NLRs %each Active Galactic Nucleus (AGN) was compared to the value derived from the extrapolation of the radial oxygen abundance gradient, obtained from \ion{H}{ii} region estimates along the galaxy disk, to the central part of the host galaxies. We find that, for most of the objects (80%\sim 80\,\%), the NLR metallicity is lower than the extrapolated value, with the average difference ()betweentheseestimatesrangingfrom0.16to0.30dex.Wesuggestthat) between these estimates ranging from 0.16 to 0.30 dex. We suggest that is due to the accretion of metal-poor gas to the AGN that feeds the nuclear supermassive black hole (SMBH), which is drawn from a reservoir molecular and/or neutral hydrogen around the SMBH. Additionally, we look for correlations between DD and the electron density (NeN_{\rm e}), [\ion{O}{iii}]λ\lambda5007 and Hα\alpha luminosities, extinction coefficient (AV)A_{V}) of the NLRs, as well as the stellar mass (MM_{*}) of the host galaxies. Evidences of an inverse correlation between the DD and the parameters NeN_{\rm e}, MM_{*} and AvA_{\rm v} were found

    The first 62 AGN observed with SDSS-IV MaNGA – III : stellar and gas kinematics

    Get PDF
    We investigate the effects of active galactic nuclei (AGN) on the gas kinematics of their host galaxies, using MaNGA data for a sample of 62 AGN hosts and 109 control galaxies (inactive galaxies). We compare orientation of the line of nodes (kinematic position angle – PA) measured from the gas and stellar velocity fields for the two samples. We found that AGN hosts and control galaxies display similar kinematic PA offsets between gas and stars. However, we note that AGN have larger fractional velocity dispersion σ differences between gas and stars [σfrac = (σgas − σstars)/σstars] when compared to their controls, as obtained from the velocity dispersion values of the central (nuclear) pixel (2. 5 diameter). The AGN have a median value of σfrac of AGN = 0.04, while the median value for the control galaxies is CTR =−0.23. 75 per cent of the AGN show σfrac > −0.13, while 75 per cent of the normal galaxies show σfrac < −0.04, thus we suggest that the parameter σfrac can be used as an indicator of AGN activity. We find a correlation between the [OIII]λ5007 luminosity and σfrac for our sample. Our main conclusion is that the AGN already observed with MaNGA are not powerful enough to produce important outflows at galactic scales, but at 1–2 kpc scales, AGN feedback signatures are always present on their host galaxies

    Lower production of IL-17A and increased susceptibility to Mycobacterium bovis in mice coinfected with Strongyloides venezuelensis

    Get PDF
    The presence of intestinal helminths can down-regulate the immune response required to control mycobacterial infection. BALB/c mice infected with Mycobacterium bovis following an infection with the intestinal helminth Strongyloides venezuelensis showed reduced interleukin-17A production by lung cells and increased bacterial burden. Also, small granulomas and a high accumulation of cells expressing the inhibitory molecule CTLA-4 were observed in the lung. These data suggest that intestinal helminth infection could have a detrimental effect on the control of tuberculosis (TB) and render coinfected individuals more susceptible to the development of TB

    The first 62 AGNs observed with SDSS-IV MaNGA : I. Their characterization and definition of a control sample

    Get PDF
    We report the characterization of the first 62 Mapping Nearby Galaxies at the Apache Point Observatory active galactic nuclei (AGNs) hosts and the definition of a control sample of non-active galaxies. This control sample was selected in order to match the AGN hosts in terms of stellar mass, redshift, visual morphology and inclination. The stellar masses are in the range 9.4 < log M/M < 11.5, and most objects have redshifts ≤0.08. The AGN sample is mostly comprised low-luminosity AGN, with only 17 ‘strong AGN’ with L([O III]λ5007 Å) ≥ 3.8 × 1040 erg s−1. The inner 1–3 kpc of the control sample galaxies are dominated by the oldest (≥ 4Gyr) component, with a small contribution of intermediate age and young stars (<940 Myr). Examining the relationship between the stellar population properties and L([O III]), we find that with increasing L([O III]), the AGN exhibit a decreasing contribution from the oldest stellar population relative to control galaxies and an increasing contribution from the younger components (∼40 Myr).We also find a correlation of the mean age differences (AGN–control) with L([O III]), in the sense that more luminous AGNs are younger than the control objects, while the low-luminosity AGNs are older. These results support a connection between the growth of the galaxy bulge via formation of new stars and the growth of the Supermassive Black Hole via accretion in the AGN phase

    Ionised gas kinematics in MaNGA AGN: Extents of the narrow-line and kinematically disturbed regions

    Get PDF
    Context. Feedback from active galactic nuclei (AGNs) in general seems to play an important role in the evolution of galaxies, although the impact of AGN winds on their host galaxies is still unknown in the absence of a detailed analysis. Aims. We aim to analyse the kinematics of a sample of 170 AGN host galaxies as compared to those of a matched control sample of non-active galaxies from the MaNGA survey in order to characterise and estimate the extents of the narrow-line region (NLR) and of the kinematically disturbed region (KDR) by the AGN. Methods. We defined the observed NLR radius (rNLR, o) as the farthest distance from the nucleus within which both [O III]/Hβ and [N II]/Hα ratios fall in the AGN region of the BPT diagram, and the Hα equivalent width was required to be larger than 3.0 Å. The extent of the KDR (rKDR, o) is defined as the distance from the nucleus within which the AGN host galaxies show a more disturbed gas kinematics than the control galaxies. Results. The AGN [O III]λ5007 luminosity ranges from 1039 to 1041 erg s−1, and the kinematics derived from the [O III] line profiles reveal that, on average, the most luminous AGNs (L[O III] > 3.8 × 1040 erg s−1) possess higher residual differences between the gaseous and stellar velocities and velocitie dispersions than their control galaxies in all the radial bins. Spatially resolved NLRs and KDRs were found in 55 and 46 AGN host galaxies, with corrected radii 0.2 < rKDR, c < 2.3 kpc and 0.4 < rNLR, c < 10.1 kpc and a relation between the two given by log rKDR, c = (0.53 ± 0.12) log rNLR, c + (1.07 ± 0.22), respectively. On average, the extension of the KDR corresponds to about 30% of that of the NLR. Assuming that the KDR is due to an AGN outflow, we have estimated ionised gas mass outflow rates that range between 10−5 and ∼1 M⊙ yr−1, and kinetic powers that range from 1034 to 1040 erg s−1. Conclusions. Comparing the power of the AGN ionised outflows with the AGN luminosities, they are always below the 0.05 LAGN model threshold for having an important feedback effect on their respective host galaxies. The mass outflow rates (and power) of our AGN sample correlate with their luminosities, populating the lowest AGN luminosity range of the correlations previously found for more powerful sources. © ESO 2022.This study was funded in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à pesquisa do Estado do RS (FAPERGS). ADM acknowledges financial support from the Spanish MCIU grant PID2019-106027GB-C41 and from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709). ADM also acknowledges the support of the INPhINIT fellowship form “la Caixa” Foundation (ID 100010434), under the fellowship code LCF/BQ/DI19/11730018. SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, the Chilean Participation Group, the French Participation Group, Harvard-Smithsonian Center for Astrophysics, Instituto de Astrofisica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatório Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.Peer reviewe

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected
    corecore