449 research outputs found

    Impact of methodological approaches in the agreement between subjective and objective methods for assessing screen time and sedentary behavior in pediatric population: a systematic review

    Get PDF
    Introduction: sedentary behavior is an important target for health promotion. In this systematic review, we aimed to provide evidence to support decisions about measurement approach choices for subjectively assessing sedentary behavior in pediatric population, adopting objective methods as the reference. Methods: in this systematic review with meta-analysis, published studies were retrieved from electronic databases: Medline (PubMed), Web of Science, Embase, SPORTDiscus, BioMed Central and SCOPUS. We considered studies evaluating sedentary behavior agreement through questionnaire and/or diary in comparison with an objective measure. A total of six inclusion criteria v, rere used. We synthesized the data using correlation coefficients (r) as an indicator of agreement estimates. The review protocol is registered in the PROSPERO database (CRD42014015138). Results: a total of 14 studies met the inclusion criteria with ages ranging from 3 to 17.5 years and provided 17 agreement analyses. Thirteen of these agreement analyses (76.5%) reported correlation coefficients. We found two major groups of sedentary activities: screen time (47.1%) and sedentary behaviors (52.9%). The pooled agreement between questionnaires and accelerometers for assessing self-reported screen time was negative (r =-0.15; Cl 95%:-0.17 to-0.13). Conversely, when the sedentary behavior was assessed by questionnaires and accelerometers, the pooled agreement, vas positive for parent-reporting (r = 0.09; Cl 95%; 0.04 to 0.13) and self-reporting (r = 0.43; CI 95%: 0.40 to 0.47) in children and adolescents, respectively. Conclusion: questionnaires have positive agreement with accelerometers for assessing sedentary behavior, whereas the agreement is negative for assessing screen time. Self-reported questionnaires are recommended methods to measure sedentary behavior in adolescents

    Salt slag recycled by-products in high insulation geopolymer cellular concrete manufacturing

    Full text link
    [EN] This investigation presents an important contribution to the understanding of the ¿zero discharge in the aluminium cycle¿ goal. The salt slag recycled by-product was reused as alternative aerating agent in the manufacture of cellular concretes: fluid catalytic cracking catalyst (FCC) ¿ based geopolymer (GCC) and blast furnace (BFS) ¿ based alkali-activated (AACC). The hydrogen emission test was used to evaluate the gas releasing properties because of the presence of metallic aluminium in the salt slag. Density (kg/cm3), compressive strength (MPa) and thermal conductivity (W/mK) for GCC were 75, 6.9 and 0.31 and for AACC were 602, 7.5 and 0.16.The authors give special grateful to Befesa Aluminio S.L (Valladolid, Spain) for the granulated paval supply. The authors would also thanks to Cementval and BPOil for precursors supplying. Thanks are given to the Electron Microscopy Service of the Universitat Politècnica de València (Spain).Font-Pérez, A.; Soriano Martinez, L.; Monzó Balbuena, JM.; Moraes, J.; Borrachero Rosado, MV.; Paya Bernabeu, JJ. (2020). Salt slag recycled by-products in high insulation geopolymer cellular concrete manufacturing. Construction and Building Materials. 231:1-13. https://doi.org/10.1016/j.conbuildmat.2019.117114S113231Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601-605. doi:10.1016/j.cemconcomp.2008.12.010Petek Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38-48. doi:10.1016/j.cemconcomp.2014.03.005Panesar, D. K. (2013). Cellular concrete properties and the effect of synthetic and protein foaming agents. Construction and Building Materials, 44, 575-584. doi:10.1016/j.conbuildmat.2013.03.024B. Dolton, C. Hannah, Cellular Concrete : Engineering and Technological Advancement for Construction in Cold Climates, (2006) 1–11.Narayanan, N., & Ramamurthy, K. (2000). Structure and properties of aerated concrete: a review. Cement and Concrete Composites, 22(5), 321-329. doi:10.1016/s0958-9465(00)00016-0Holt, E., & Raivio, P. (2005). Use of gasification residues in aerated autoclaved concrete. Cement and Concrete Research, 35(4), 796-802. doi:10.1016/j.cemconres.2004.05.005Mo, K. H., Alengaram, U. J., Jumaat, M. Z., Yap, S. P., & Lee, S. C. (2016). Green concrete partially comprised of farming waste residues: a review. Journal of Cleaner Production, 117, 122-138. doi:10.1016/j.jclepro.2016.01.022Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). One-part alkali-activated materials: A review. Cement and Concrete Research, 103, 21-34. doi:10.1016/j.cemconres.2017.10.001Duxson, P., Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590-1597. doi:10.1016/j.cemconres.2007.08.018Ducman, V., & Korat, L. (2016). Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Materials Characterization, 113, 207-213. doi:10.1016/j.matchar.2016.01.019Esmaily, H., & Nuranian, H. (2012). Non-autoclaved high strength cellular concrete from alkali activated slag. Construction and Building Materials, 26(1), 200-206. doi:10.1016/j.conbuildmat.2011.06.010Font, A., Borrachero, M. V., Soriano, L., Monzó, J., & Payá, J. (2017). Geopolymer eco-cellular concrete (GECC) based on fluid catalytic cracking catalyst residue (FCC) with addition of recycled aluminium foil powder. Journal of Cleaner Production, 168, 1120-1131. doi:10.1016/j.jclepro.2017.09.110Font, A., Borrachero, M. V., Soriano, L., Monzó, J., Mellado, A., & Payá, J. (2018). New eco-cellular concretes: sustainable and energy-efficient materials. Green Chemistry, 20(20), 4684-4694. doi:10.1039/c8gc02066cArellano Aguilar, R., Burciaga Díaz, O., & Escalante García, J. I. (2010). Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates. Construction and Building Materials, 24(7), 1166-1175. doi:10.1016/j.conbuildmat.2009.12.024RLG International cementreview, (n.d.).World Aluminium, Environmental Metrics Report Year 2010 Data Final, (2014) 21.Hong, S.-H., Lee, D.-W., & Kim, B.-K. (2000). Manufacturing of aluminum flake powder from foil scrap by dry ball milling process. Journal of Materials Processing Technology, 100(1-3), 105-109. doi:10.1016/s0924-0136(99)00469-0A. Al Ashraf, Energy Consumption and the CO2 footprint in aluminium production, (2014).Befesa :: Press :: News archive :: 2013, (n.d.). http://www.befesa.es/web/en/prensa/historico_de_noticias/2013/bma_20130307.html (accessed April 15, 2018).Araújo, E. G. de, & Tenório, J. A. S. (2005). Cellular Concrete with Addition of Aluminum Recycled Foil Powders. Materials Science Forum, 498-499, 198-204. doi:10.4028/www.scientific.net/msf.498-499.198Song, Y., Li, B., Yang, E.-H., Liu, Y., & Ding, T. (2015). Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cement and Concrete Composites, 56, 51-58. doi:10.1016/j.cemconcomp.2014.11.006Moraes, J. C. B., Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Monzó, J., Borrachero, M. V., … Payá, J. (2016). Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA). Construction and Building Materials, 124, 148-154. doi:10.1016/j.conbuildmat.2016.07.090N.E. En, N. Une-en, española, (2005).F. Babbitt, R.E. Barnett, M.L. Cornelius, B.T. Dye, D.L. Liotti, S.B. Schmidt, J.E. Tanner, S.C. Valentini, ACI 523.3R-14 Guide for Cellular Concretes above 50 lb/ft3 (800 kg/m3), 2014.ASTM International, ASTM D5334 – 14 Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, (n.d.).IEEE 442-1981 – IEEE Guide for Soil Thermal Resistivity Measurements, (n.d.).D.R. van Boggelen, Safe aluminium dosing in AAC plants, 5th Int. Conf. Autoclaved Aerated Concr. (2011) 45–50.Porciúncula, C. B., Marcilio, N. R., Tessaro, I. C., & Gerchmann, M. (2012). Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH. Brazilian Journal of Chemical Engineering, 29(2), 337-348. doi:10.1590/s0104-66322012000200014Aleksandrov, Y. A., Tsyganova, E. I., & Pisarev, A. L. (2003). Russian Journal of General Chemistry, 73(5), 689-694. doi:10.1023/a:1026114331597Yang, K.-H., Lee, K.-H., Song, J.-K., & Gong, M.-H. (2014). Properties and sustainability of alkali-activated slag foamed concrete. Journal of Cleaner Production, 68, 226-233. doi:10.1016/j.jclepro.2013.12.068Sanjayan, J. G., Nazari, A., Chen, L., & Nguyen, G. H. (2015). Physical and mechanical properties of lightweight aerated geopolymer. Construction and Building Materials, 79, 236-244. doi:10.1016/j.conbuildmat.2015.01.043Nambiar, E. K. K., & Ramamurthy, K. (2007). Air‐void characterisation of foam concrete. Cement and Concrete Research, 37(2), 221-230. doi:10.1016/j.cemconres.2006.10.009Narayanan, N., & Ramamurthy, K. (2000). Microstructural investigations on aerated concrete. Cement and Concrete Research, 30(3), 457-464. doi:10.1016/s0008-8846(00)00199-xAlexanderson, J. (1979). Relations between structure and mechanical properties of autoclaved aerated concrete. Cement and Concrete Research, 9(4), 507-514. doi:10.1016/0008-8846(79)90049-

    Behavior of metakaolin-based geopolymers incorporating sewage sludge ash (SSA)

    Get PDF
    [EN] In recent years, geopolymers have become a widely researched binding material. There are technological and environmental advantages tousing this type of binder instead of Portland cement. In this study, binary systems of geopolymers were produced by using mixtures of metakaolin (MK) ,a well-known aluminosilicate raw material, and a residue from sewage sludge incineration: sewage sludge ash (SSA). This ash was used to partially replace the metakaolin in proportions of 0 20%. The mixtures were activated with alkaline solutions and they were cured by using two different conditions: at room temperature (25 °C) and in a thermal bath (65 °C). The samples were assessed by X-ray diffraction, scanning electron microscopy (pastes) and compressive strength (mortars). The results from these studies showed zeolite formation (faujasite) in geopolymers cured in the thermal bath, which caused a decrease in the compressive strength of the alkali-activated mortars.Replacement of MK with SSA caused a lower reduction in the compressive strength of mortars cured at 65 °C. However, at room temperature, similar mechanical strength was observed for the MK and MK-SSA systems. These results demonstrated that SSA is a suitable mineral precursor for partial replacement of MK in geopolymer production.The authors acknowledge Santander Universidades for the grant to Lucia Reig (program: Becas lberoamerica Jovenes Profesores Investigadores Espana 2014), CAPES (CAPES/DGU no 266/12), CNPq (no. 14/2013 processo 478057/2013-0) Scanning electron microscopy service of FEIS/UNESP and CNPq (processo 309015/2015-4).Istuque, D.; Reig Cerdá, L.; Moraes, J.; Akasaki, JL.; Borrachero Rosado, MV.; Soriano Martínez, L.; Paya Bernabeu, JJ.... (2016). Behavior of metakaolin-based geopolymers incorporating sewage sludge ash (SSA). Materials Letters. 180:192-195. https://doi.org/10.1016/j.matlet.2016.05.137S19219518

    Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA)

    Full text link
    Alkali-activated binders are the new trend in building construction studies due their good mechanical properties and environmental advantages. These type of binders are obtained by a mixing of a solid precursor with an activating solution. In this study, the influence of sugar cane straw ash (SCSA) obtained from an auto-combustion process on blast-furnace slag (BFS) based alkali-activated binders was assessed as solid precursor. The studied proportions of BFS/SCSA were 100/0 (control), 85/15, 75/25, 67/33 and 50/50 (by mass). Regarding to the activating solutions, three different mixtures were used: only NaOH (8 mol kg1 Na+ ) and two different combinations of NaOH with sodium silicate (8 mol kg1 Na+ and SiO2/Na2O molar ratios of 0.50 and 0.75). The water/binder was maintained constant. To assess the influence of SCSA on BFS-alkali activated binders, mortars were evaluated in terms of compressive strength (3 90 days curing time at room temperature and 3 days at 65 C); and pastes were studied to justify these results by means of thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The presence of SCSA in the binder greatly improved the compressive strength when compared to the control BFS mortars, reaching values higher than 50 MPa after 90 days. SCSA/BFS samples activated with sodium hydroxide yielded similar compressive strength values to those obtained for BFS mortars activated with sodium silicate. In the new binders, the partial replacement of BFS, the total replacement of sodium silicate solution and a new way of valorizing sugar cane straw enhanced sustainability.The authors would like to thanks to CNPq processo no. 401724/2013-1 and the "Ministerio de Education, Cultura y Deporte" of Spain ("Cooperacion Interuniversitaria" program with Brazil PHB-2011-0016-PC). Thanks are also given to the Electron Microscopy Service of the Universitat Politecnica de Valencia.Moraes, J.; Mitsuuchi Tashima, M.; Akasaki, JL.; Pinheiro Melges, JL.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Soriano Martínez, L.... (2016). Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA). Construction and Building Materials. 124:148-154. https://doi.org/10.1016/j.conbuildmat.2016.07.090S14815412

    Search for charginos in e+e- interactions at sqrt(s) = 189 GeV

    Full text link
    An update of the searches for charginos and gravitinos is presented, based on a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by combining the chargino searches with neutralino searches at the Z resonance implies a limit on the mass of the lightest neutralino which, for a heavy sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure

    Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders

    Full text link
    Due environmental problems related to Portland cement consumption, many studies have been performed to diminish its use. One solution is the development of alkali-activated binders, which can decrease CO2 emissions and energy consumption by 70% when compared to Portland cement production. In addition, an alkali-activated binder presents mechanical properties similar to Portland cement mixtures, which turns into an interesting material in civil construction. Aluminosilicate-based materials are important raw materials to produce the alkali-activated binders. Therefore, two residues are presented as an aluminosilicate source in this study: fly ash (FA) and sugarcane bagasse ash (SCBA). Both residues were obtained from a combustion process to generate energy, the former from coal and the latter from the bagasse of the sugarcane industry. In addition, the alkaline activating solution is an important factor to achieve improved mechanical properties. In this context, this study investigated the influence of four different SiO2/K2O molar ratios (0, 0.36, 0.75 and 1.22) in the activating solution with a constant water content, and three FA/SCBA binder proportions (75/25, 50/50 and 25/75). Microstructural characterization was carried out by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, mercury intrusion porosimetry, pH and electrical conductivity measurements to study the evolution of the reaction process. The compressive strength of mortars was assessed in order to determine the optimum SiO2/K2O molar ratio and FA/SCBA ratio. The tests showed that a SiO2/K2O molar ratio of 0.75 and FA/SCBA proportion of 75/25 provided the best mechanical properties.The authors would like to thank the Ministerio de Educacion, Cultura y Deporte of Spain (Cooperacion Interuniversitaria program with Brazil, Project PHB-2011-0016-PC), CAPES Brazil (Project CAPES/DGU No. 266/12) and CNPq (process no 401724/2013-1).Castaldelli, V.; Moraes, J.; Akasaki, JL.; Pinheiro Melges, JL.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Soriano Martínez, L.... (2016). Study of the binary system fly ash/sugarcane bagasse ash (FA/SCBA) in SiO2/K2O alkali-activated binders. Fuel. 174:307-316. https://doi.org/10.1016/j.fuel.2016.02.020S30731617

    Hadronization properties of b quarks compared to light quarks in e+e- -> q qbar from 183 to 200 GeV

    Full text link
    The DELPHI detector at LEP has collected 54 pb^{-1} of data at a centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data were used to measure the average charged particle multiplicity in e+e- -> b bbar events, _{bb}, and the difference delta_{bl} between _{bb} and the multiplicity, _{ll}, in generic light quark (u,d,s) events: delta_{bl}(183 GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85 (stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01 (syst). This result is consistent with QCD predictions, while it is inconsistent with calculations assuming that the multiplicity accompanying the decay of a heavy quark is independent of the mass of the quark itself.Comment: 13 pages, 2 figure

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore