1,034 research outputs found

    Metacarpal trabecular bone varies with distinct hand-positions used in hominid locomotion

    Get PDF
    Trabecular bone remodels during life in response to loading and thus should, at least in part, reflect potential variation in the magnitude, frequency and direction of joint loading across different hominid species. Here we analyse the trabecular structure across all non-pollical metacarpal distal heads (Mc2-5) in extant great apes, expanding on previous volume of interest and whole-epiphysis analyses that have largely focussed on only the first or third metacarpal. Specifically, we employ both a univariate statistical mapping and a multivariate approach to test for both inter-ray and interspecific differences in relative trabecular bone volume fraction (RBV/TV) and degree of anisotropy (DA) in Mc2-5 subchondral trabecular bone. Results demonstrate that while DA values only separate Pongo from African apes (Pan troglodytes, Pan paniscus, Gorilla gorilla), RBV/TV distribution varies with the predicted loading of the metacarpophalangeal (McP) joints during locomotor behaviours in each species. Gorilla exhibits a relatively dorsal distribution of RBV/TV consistent with habitual hyper-extension of the McP joints during knuckle-walking, whereas Pongo has a palmar distribution consistent with flexed McP joints used to grasp arboreal substrates. Both Pan species possess a disto-dorsal distribution of RBV/TV, compatible with multiple hand postures associated with a more varied locomotor regime. Further inter-ray comparisons reveal RBV/TV patterns consistent with varied knuckle-walking postures in Pan species in contrast to higher RBV/TV values toward the midline of the hand in Mc2 and Mc5 of Gorilla, consistent with habitual palm-back knuckle-walking. These patterns of trabecular bone distribution and structure reflect different behavioural signals that could be useful for determining the behaviours of fossil hominins

    Specific Responses of Salmonella enterica to Tomato Varieties and Fruit Ripeness Identified by In Vivo Expression Technology

    Get PDF
    Recent outbreaks of vegetable-associated gastroenteritis suggest that enteric pathogens colonize, multiply and persist in plants for extended periods of time, eventually infecting people. Genetic and physiological pathways, by which enterics colonize plants, are still poorly understood.To better understand interactions between Salmonella enterica sv. Typhimurium and tomatoes, a gfp-tagged Salmonella promoter library was screened inside red ripe fruits. Fifty-one unique constructs that were potentially differentially regulated in tomato relative to in vitro growth were identified. The expression of a subset of these promoters was tested in planta using recombinase-based in vivo expression technology (RIVET) and fitness of the corresponding mutants was tested. Gene expression in Salmonella was affected by fruit maturity and tomato cultivar. A putative fadH promoter was upregulated most strongly in immature tomatoes. Expression of the fadH construct depended on the presence of linoleic acid, which is consistent with the reduced accumulation of this compound in mature tomato fruits. The cysB construct was activated in the fruit of cv. Hawaii 7997 (resistant to a race of Ralstonia solanacearum) more strongly than in the universally susceptible tomato cv. Bonny Best. Known Salmonella motility and animal virulence genes (hilA, flhDC, fliF and those encoded on the pSLT virulence plasmid) did not contribute significantly to fitness of the bacteria inside tomatoes, even though deletions of sirA and motA modestly increased fitness of Salmonella inside tomatoes.This study reveals the genetic basis of the interactions of Salmonella with plant hosts. Salmonella relies on a distinct set of metabolic and regulatory genes, which are differentially regulated in planta in response to host genotype and fruit maturity. This enteric pathogen colonizes tissues of tomatoes differently than plant pathogens, and relies little on its animal virulence genes for persistence within the fruit

    Factors that affect proliferation of Salmonella in tomatoes post-harvest: the roles of seasonal effects, irrigation regime, crop and pathogen genotype

    Get PDF
    MAIN OBJECTIVES: Fresh fruits and vegetables become increasingly recognized as vehicles of human salmonellosis. Physiological, ecological, and environmental factors are all thought to contribute to the ability of Salmonella to colonize fruits and vegetables pre- and post-harvest. The goal of this study was to test how irrigation levels, fruit water congestion, crop and pathogen genotypes affect the ability of Salmonella to multiply in tomatoes post-harvest. EXPERIMENTAL DESIGN: Fruits from three tomato varieties, grown over three production seasons in two Florida locations, were infected with seven strains of Salmonella and their ability to multiply post-harvest in field-grown tomatoes was tested. The field experiments were set up as a two-factor factorial split plot experiment, with the whole-plot treatments arranged in a randomized complete-block design. The irrigation treatment (at three levels) was the whole-plot factor, and the split-plot factor was tomato variety, with three levels. The significance of the main, two-way, and three-way interaction effects was tested using the (type III) F-tests for fixed effects. Mean separation for each significant fixed effect in the model was performed using Tukey's multiple comparison testing procedure. MOST IMPORTANT DISCOVERIES AND SIGNIFICANCE: The irrigation regime per se did not affect susceptibility of the crop to post-harvest proliferation of Salmonella. However, Salmonella grew significantly better in water-congested tissues of green tomatoes. Tomato maturity and genotype, Salmonella genotype, and inter-seasonal differences were the strongest factors affecting proliferation. Red ripe tomatoes were significantly and consistently more conducive to proliferation of Salmonella. Tomatoes harvested in the driest, sunniest season were the most conducive to post-harvest proliferation of the pathogen. Statistically significant interactions between production conditions affected post-harvest susceptibility of the crop to the pathogen. UV irradiation of tomatoes post-harvest promoted Salmonella growth

    Conservation of Salmonella Infection Mechanisms in Plants and Animals

    Get PDF
    Salmonella virulence in animals depends on effectors injected by Type III Secretion Systems (T3SSs). In this report we demonstrate that Salmonella mutants that are unable to deliver effectors are also compromised in infection of Arabidopsis thaliana plants. Transcriptome analysis revealed that in contrast to wild type bacteria, T3SS mutants of Salmonella are compromised in suppressing highly conserved Arabidopsis genes that play a prominent role during Salmonella infection of animals. We also found that Salmonella originating from infected plants are equally virulent for human cells and mice. These results indicate a high degree of conservation in the defense and infection mechanism of animal and plant hosts during Salmonella infection

    Lettuce Cultivar Mediates Both Phyllosphere and Rhizosphere Activity of Escherichia coli O157:H7

    Get PDF
    Plant roots and leaves can be colonized by human pathogenic bacteria, and accordingly some of the largest outbreaks of foodborne illness have been associated with salad leaves contaminated by E. coli O157. Integrated disease management strategies often exploit cultivar resistance to provide a level of protection from economically important plant pathogens; however, there is limited evidence of whether the genotype of the plant can also influence the extent of E. coli O157 colonization. To determine cultivar-specific effects on colonization by E. coli O157, we used 12 different cultivars of lettuce inoculated with a chromosomally lux-marked strain of E. coli O157:H7. Lettuce seedlings grown gnotobiotically in vitro did exhibit a differential cultivar-specific response to E. coli O157 colonization, although importantly there was no relationship between metabolic activity (measured as bioluminescence) and cell numbers. Metabolic activity was highest and lowest on the cultivars Vaila-winter gem and Dazzle respectively, and much higher in endophytic and tightly bound cells than in epiphytic and loosely bound cells. The cultivar effect was also evident in the rhizosphere of plants grown in compost, which suggests that cultivar-specific root exudate influences E. coli O157 activity. However, the influence of cultivar in the rhizosphere was the opposite to that in the phyllosphere, and the higher number and activity of E. coli O157 cells in the rhizosphere may be a consequence of them not being able to gain entry to the plant as effectively. If metabolic activity in the phyllosphere corresponds to a more prepared state of infectivity during human consumption, leaf internalization of E. coli O157 may pose more of a public health risk than leaf surface contamination alone

    Rosiglitazone synergizes anticancer activity of cisplatin and reduces its nephrotoxicity in 7, 12-dimethyl benz{a}anthracene (DMBA) induced breast cancer rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antineoplastic drug cisplatin remains the drug of choice for various solid tumours including breast cancer. But dose dependent nephrotoxicity is the major drawback in majority of platinum based chemotherapy regimens. Recent reports have shown that inflammatory pathways are the main offender for cisplatin induced nephrotoxicity. The present study was undertaken to assess the effect of rosiglitazone, a PPARγ agonist and an anti-inflammatory agent, on cisplatin induced nephrotoxicity, and its anticancer activity in DMBA induced breast cancer rats.</p> <p>Methods</p> <p>Mammary tumours were induced in female Sprague-Dawley rats by feeding orally with dimethylbenz [a]anthracene (DMBA) (60 mg/kg). Cisplatin induced nephropathy was assessed by measurements of blood urea nitrogen, albumin and creatinine levels. Posttranslational modifications of histone H3, mitogen-activated protein (MAP) kinase p38 expression and PPAR-γ expression were examined by western blotting.</p> <p>Results</p> <p>Our data shows involvement of TNF-α in preventing cisplatin induced nephrotoxicity by rosiglitazone. Rosiglitazone pre-treatment to cisplatin increases the expression of p38, PPAR-γ in mammary tumours and shows maximum tumour reduction. Furthermore, cisplatin induced changes in histone acetylation, phosphorylation and methylation of histone H3 in mammary tumours was ameliorated by pre-treatment of rosiglitazone. Suggesting, PPAR-γ directly or indirectly alters aberrant gene expression in mammary tumours by changing histone modifications.</p> <p>Conclusion</p> <p>To best of our knowledge this is the first report which shows that pre-treatment of rosiglitazone synergizes the anticancer activity of cisplatin and minimizes cisplatin induced nephrotoxicity in DMBA induced breast cancer.</p

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
    • 

    corecore