2,770 research outputs found
Left ventricular mass and incident hypertension in individuals with initial optimal blood pressure: the strong heart study.
Cardiac markers of preclinical disease in adolescents with the metabolic syndrome: the strong heart study.
By hook or by crook? Morphometry, competition and cooperation in rodent sperm
Background
Sperm design varies enormously across species and sperm competition is thought to be a major factor influencing this variation. However, the functional significance of many sperm traits is still poorly understood. The sperm of most murid rodents are characterised by an apical hook of the sperm head that varies markedly in extent across species. In the European woodmouse Apodemus sylvaticus (Muridae), the highly reflected apical hook of sperm is used to form sperm groups, or “trains,” which exhibited increased swimming velocity and thrusting force compared to individual sperm.
Methodology/Principal Findings
Here we use a comparative study of murine rodent sperm and demonstrate that the apical hook and sperm cooperation are likely to be general adaptations to sperm competition in rodents. We found that species with relatively larger testes, and therefore more intense sperm competition, have a longer, more reflected apical sperm hook. In addition, we show that sperm groups also occur in rodents other than the European woodmouse.
Conclusions
Our results suggest that in rodents sperm cooperation is more widespread than assumed so far and highlight the importance of diploid versus haploid selection in the evolution of sperm design and function
Relative fat-free mass deficiency and left ventricular adaptation toobesity: The Strong Heart Study.
A Close Nuclear Black Hole Pair in the Spiral Galaxy NGC 3393
The current picture of galaxy evolution advocates co-evolution of galaxies
and their nuclear massive black holes (MBHs), through accretion and merging.
Quasar pairs (6,000-300,000 light-years separation) exemplify the first stages
of this gravitational interaction. The final stages, through binary MBHs and
final collapse with gravitational wave emission, are consistent with the
sub-light-year separation MBHs inferred from optical spectra and
light-variability of two quasars. The double active nuclei of few nearby
galaxies with disrupted morphology and intense star formation (e.g., NGC 6240
and Mkn 463; ~2,400 and ~12,000 light-years separation respectively)
demonstrate the importance of major mergers of equal mass spirals in this
evolution, leading to an elliptical galaxy, as in the case of the double radio
nucleus (~15 light-years separation) elliptical 0402+379. Minor mergers of
galaxies with a smaller companion should be a more common occurrence, evolving
into spiral galaxies with active MBH pairs, but have hitherto not been seen.
Here we report the presence of two active MBHs, separated by ~430 light-years,
in the Seyfert galaxy NGC 3393. The regular spiral morphology and predominantly
old circum-nuclear stellar population of this galaxy, and the closeness of the
MBHs embedded in the bulge, suggest the result of minor merger evolution.Comment: Preprint (not final) version of a paper to appear in Natur
On the accuracy of language trees
Historical linguistics aims at inferring the most likely language
phylogenetic tree starting from information concerning the evolutionary
relatedness of languages. The available information are typically lists of
homologous (lexical, phonological, syntactic) features or characters for many
different languages.
From this perspective the reconstruction of language trees is an example of
inverse problems: starting from present, incomplete and often noisy,
information, one aims at inferring the most likely past evolutionary history. A
fundamental issue in inverse problems is the evaluation of the inference made.
A standard way of dealing with this question is to generate data with
artificial models in order to have full access to the evolutionary process one
is going to infer. This procedure presents an intrinsic limitation: when
dealing with real data sets, one typically does not know which model of
evolution is the most suitable for them. A possible way out is to compare
algorithmic inference with expert classifications. This is the point of view we
take here by conducting a thorough survey of the accuracy of reconstruction
methods as compared with the Ethnologue expert classifications. We focus in
particular on state-of-the-art distance-based methods for phylogeny
reconstruction using worldwide linguistic databases.
In order to assess the accuracy of the inferred trees we introduce and
characterize two generalizations of standard definitions of distances between
trees. Based on these scores we quantify the relative performances of the
distance-based algorithms considered. Further we quantify how the completeness
and the coverage of the available databases affect the accuracy of the
reconstruction. Finally we draw some conclusions about where the accuracy of
the reconstructions in historical linguistics stands and about the leading
directions to improve it.Comment: 36 pages, 14 figure
Evidence for an excess of B -> D(*) Tau Nu decays
Based on the full BaBar data sample, we report improved measurements of the
ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or
mu. These ratios are sensitive to new physics contributions in the form of a
charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) =
0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0
sigma and 2.7 sigma, respectively. Taken together, our results disagree with
these expectations at the 3.4 sigma level. This excess cannot be explained by a
charged Higgs boson in the type II two-Higgs-doublet model. We also report the
observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the
format of Figure 2 and included the effect of the change of the Tau
polarization due to the charged Higg
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Differential branching fraction and angular analysis of decays
The differential branching fraction of the rare decay is measured as a function of , the
square of the dimuon invariant mass. The analysis is performed using
proton-proton collision data, corresponding to an integrated luminosity of 3.0
\mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is
observed in the region below the square of the mass. Integrating
over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as
d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+
0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1},
where the uncertainties are statistical, systematic and due to the
normalisation mode, , respectively.
In the intervals where the signal is observed, angular distributions are
studied and the forward-backward asymmetries in the dimuon ()
and hadron () systems are measured for the first time. In the
range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} =
-0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} =
-0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde
- …
