102 research outputs found
Diabetes and the Risk of Developing Parkinson’s Disease in Denmark
Objective: Insulin contributes to normal brain function. Previous studies have suggested associations between midlife diabetes and neurodegenerative diseases, including Parkinson’s disease. Using Danish population registers, we investigated whether a history of diabetes or the use of antidiabetes drugs was associated with Parkinson’s disease. Research Design and Methods: From the nationwide Danish Hospital Register hospital records, we identified 1,931 patients with a first-time diagnosis of Parkinson’s disease between 2001 and 2006. We randomly selected 9,651 population control subjects from the Central Population Registry and density matched them by birth year and sex. Pharmacy records comprising all antidiabetes and anti-Parkinson drug prescriptions in Denmark were available. Odds ratios (ORs) were estimated by logistic regression models. Results: Having diabetes, as defined by one or more hospitalizations and/or outpatient visits for the condition, was associated with a 36% increased risk of developing Parkinson’s disease (OR 1.36 [95% CI 1.08–1.71]). Similarly, diabetes defined by the use of any antidiabetes medications was associated with a 35% increased Parkinson’s disease risk (1.35 [1.10–1.65]). When diabetes was defined as the use of oral antidiabetes medications, effect estimates were stronger in women (2.92 [1.34–6.36]), whereas when diabetes was defined as any antidiabetes drug prescription, patients with early-onset Parkinson’s disease were at highest risk (i.e., Parkinson’s disease diagnosed before the age of 60 years; 3.07 [1.65–5.70]). Conclusions: We found that a diagnosis of, or treatment received for, diabetes was significantly associated with an increased risk of developing Parkinson’s disease, especially younger-onset Parkinson’s disease. Our results suggest a common pathophysiologic pathway between the two diseases. Future studies should take age at Parkinson’s disease onset into account
A Blueberry-Enriched Diet Attenuates Nephropathy in a Rat Model of Hypertension via Reduction in Oxidative Stress
To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Oxidative stress (OS) appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-induced renal injury; however, attention has shifted recently to the therapeutic potential of natural products as antioxidants. Blueberries (BB) have among the highest antioxidant capacities of fruits and vegetables.Male spontaneously hypertensive rats received a BB-enriched diet (2% w/w) or an isocaloric control diet for 6 or 12 weeks or 2 days. Compared to controls, rats fed BB-enriched diet for 6 or 12 weeks exhibited lower blood pressure, improved glomerular filtration rate, and decreased renovascular resistance. As measured by electron paramagnetic resonance spectroscopy, significant decreases in total reactive oxygen species (ROS), peroxynitrite, and superoxide production rates were observed in kidney tissues in rats on long-term dietary treatment, consistent with reduced pathology and improved function. Additionally, measures of antioxidant status improved; specifically, renal glutathione and catalase activities increased markedly. Contrasted to these observations indicating reduced OS in the BB group after long-term feeding, similar measurements made in rats fed the same diet for only 2 days yielded evidence of increased OS; specifically, significant increases in total ROS, peroxynitrite, and superoxide production rates in all tissues (kidney, brain, and liver) assayed in BB-fed rats. These results were evidence of "hormesis" during brief exposure, which dissipated with time as indicated by enhanced levels of catalase in heart and liver of BB group.Long-term feeding of BB-enriched diet lowered blood pressure, preserved renal hemodynamics, and improved redox status in kidneys of hypertensive rats and concomitantly demonstrated the potential to delay or attenuate development of hypertension-induced renal injury, and these effects appear to be mediated by a short-term hormetic response
Association of interleukin-6 polymorphisms with obesity or metabolic traits in young Mexican-Americans
Objective The objective of the study is to investigate the association of interleukin-6 (IL6) promoter single-nucleotide polymorphisms rs1800797 (-597 G/A) and rs1800796 (-572 G/C) with obesity or metabolic syndrome in Mexican-Americans.
Methods The rs1800797 and rs1800796 single-nucleotide polymorphisms were genotyped in Mexican-Americans (n = 437) from South Texas, and results were correlated with measures of obesity and metabolic syndrome including body mass index, waist circumference, blood pressure, cholesterol, triglycerides, glucose, liver enzymes, plasma IL6 and high-sensitive C-reactive protein (hs-CRP).
Results Significant associations were found for the rs1800796 variant with increased waist circumference, insulin resistance, lower IL6 levels and higher hs-CRP levels. The rs1800797 variant showed no associations with metabolic traits but was associated with higher IL6 levels and lower hs-CRP levels.
Conclusions Findings in this study support the anti-inflammatory, anti-obesity and glucose homeostatic roles of IL6 in Mexican-American youth
Mycobacteria counteract a TLR-mediated nitrosative defense mechanism in a zebrafish infection model.
Pulmonary tuberculosis (TB), caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb), is a major world health problem. The production of reactive nitrogen species (RNS) is a potent cytostatic and cytotoxic defense mechanism against intracellular pathogens. Nevertheless, the protective role of RNS during Mtb infection remains controversial. Here we use an anti-nitrotyrosine antibody as a readout to study nitration output by the zebrafish host during early mycobacterial pathogenesis. We found that recognition of Mycobacterium marinum, a close relative of Mtb, was sufficient to induce a nitrosative defense mechanism in a manner dependent on MyD88, the central adaptor protein in Toll like receptor (TLR) mediated pathogen recognition. However, this host response was attenuated by mycobacteria via a virulence mechanism independent of the well-characterized RD1 virulence locus. Our results indicate a mechanism of pathogenic mycobacteria to circumvent host defense in vivo. Shifting the balance of host-pathogen interactions in favor of the host by targeting this virulence mechanism may help to alleviate the problem of infection with Mtb strains that are resistant to multiple drug treatments
C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility
Meiotic recombination generates crossovers between homologous chromosomes that are essential for genome haploidization. The synaptonemal complex is a ‘zipper’-like protein assembly that synapses homologue pairs together and provides the structural framework for
processing recombination sites into crossovers. Humans show individual differences in the number of crossovers generated across the genome. Recently, an anonymous gene variant in C14ORF39/SIX6OS1 was identified that influences the recombination rate in humans. Here
we show that C14ORF39/SIX6OS1 encodes a component of the central element of the synaptonemal complex. Yeast two-hybrid analysis reveals that SIX6OS1 interacts with the well-established protein synaptonemal complex central element 1 (SYCE1). Mice lacking SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes
an arrest at the pachytene-like stage and results in infertility. In accordance with its role as a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate processing of intermediate recombination nodules before crossover formation.This work was supported by BFU_2014-59307-R, MEIONet and JCyLe (CSI052U16). LGH and NFM are supported by European Social Fund/JCyLe grants (EDU/1083/2013 and EDU/310/2015). ORD is a Sir Henry Dale Fellow jointly funded by the Wellcome Trust and Royal Society (Grant Number 104158/Z/14/Z). RB is funded by DFG (grant Be1168/8-1). AT and ID were supported by DFG grants TO421/8-2 and TO421/6-1, respectively.Peer reviewe
Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation
Osteoblast differentiation from mesenchymal cells is regulated by multiple signalling pathways.
Here we have analysed the roles of Fibroblast Growth Factor (FGF) and canonical
Wingless-type MMTV integration site (Wnt/β-Catenin) signalling pathways on zebrafish
osteogenesis. We have used transgenic and chemical interference approaches to manipulate
these pathways and have found that both pathways are required for osteoblast differentiation
in vivo. Our analysis of bone markers suggests that these pathways act at the same
stage of differentiation to initiate expression of the osteoblast master regulatory gene osterix
(osx). We use two independent approaches that suggest that osx is a direct target of these
pathways. Firstly, we manipulate signalling and show that osx gene expression responds
with similar kinetics to that of known transcriptional targets of the FGF and Wnt pathways.
Secondly, we have performed ChIP with transcription factors for both pathways and our
data suggest that a genomic region in the first intron of osx mediates transcriptional activation.
Based upon these data, we propose that FGF and Wnt/β-Catenin pathways act in part
by directing transcription of osx to promote osteoblast differentiation at sites of bone
formation
Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations : A transethnic genome-wide meta-analysis
Background Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes. Methods & findings Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04-1.06, per HbA1c-raising allele, p = 3 x 10-29); whereas GS-E was not (OR = 1.00, 95% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66-0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI0.55-0.74) of African American adults with T2Dto remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants. Conclusions As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.Peer reviewe
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
- …