415 research outputs found

    Investigation of the Jahn-Teller Transition in TiF3 using Density Functional Theory

    Full text link
    We use first principles density functional theory to calculate electronic and magnetic properties of TiF3 using the full potential linearized augmented plane wave method. The LDA approximation predicts a fully saturated ferromagnetic metal and finds degenerate energy minima for high and low symmetry structures. The experimentally observed Jahn-Teller phase transition at Tc=370K can not be driven by the electron-phonon interaction alone, which is usually described accurately by LDA. Electron correlations beyond LDA are essential to lift the degeneracy of the singly occupied Ti t2g orbital. Although the on-site Coulomb correlations are important, the direction of the t2g-level splitting is determined by the dipole-dipole interactions. The LDA+U functional predicts an aniferromagnetic insulator with an orbitally ordered ground state. The input parameters U=8.1 eV and J=0.9 eV for the Ti 3d orbital were found by varying the total charge on the TiF62−_6^{2-} ion using the molecular NRLMOL code. We estimate the Heisenberg exchange constant for spin-1/2 on a cubic lattice to be approximately 24 K. The symmetry lowering energy in LDA+U is about 900 K per TiF3 formula unit.Comment: 7 pages, 9 figures, to appear in Phys. Rev.

    Theory of coherent transport by an ultra-cold atomic Fermi gas through linear arrays of potential wells

    Full text link
    Growing interest is being given to transport of ultra-cold atomic gases through optical lattices generated by the interference of laser beams. In this connection we evaluate the phase-coherent transport of a spin-polarized gas of fermionic atoms along linear structures made from potential wells set in four alternative types of sequence. These are periodic chains of either identical wells or pairs of different wells, and chains of pairs of wells arranged in either a Fibonacci quasi-periodic sequence or a random sequence. The transmission coefficient of fermionic matter is evaluated in a T-matrix scattering approach by describing each array through a tight-binding Hamiltonian and by reducing it to an effective dimer by means of a decimation/renormalization method. The results are discussed in comparison with those pertaining to transport by Fermi-surface electrons coupled to an outgoing lead and by an atomic Bose-Einstein condensate. Main attention is given to (i) Bloch oscillations and their mapping into alternating-current flow through a Josephson junction; (ii) interference patterns that arise on period doubling and their analogy with beam splitting in optical interferometry; (iii) localization by quasi-periodic disorder inside a Fibonacci-ordered structure of double wells; and (iv) Anderson localization in a random structure of double wells.Comment: 14 pages, 4 figure

    Modeling of complex oxide materials from the first principles: systematic applications to vanadates RVO3 with distorted perovskite structure

    Full text link
    "Realistic modeling" is a new direction of electronic structure calculations, where the main emphasis is made on the construction of some effective low-energy model entirely within a first-principle framework. Ideally, it is a model in form, but with all the parameters derived rigorously, on the basis of first-principles electronic structure calculations. The method is especially suit for transition-metal oxides and other strongly correlated systems, whose electronic and magnetic properties are predetermined by the behavior of some limited number of states located near the Fermi level. After reviewing general ideas of realistic modeling, we will illustrate abilities of this approach on the wide series of vanadates RVO3 (R= La, Ce, Pr, Nd, Sm, Gd, Tb, Yb, and Y) with distorted perovskite structure. Particular attention will be paid to computational tools, which can be used for microscopic analysis of different spin and orbital states in the partially filled t2g-band. We will explicitly show how the lifting of the orbital degeneracy by the monoclinic distortion stabilizes C-type antiferromagnetic (AFM) state, which can be further transformed to the G-type AFM state by changing the crystal distortion from monoclinic to orthorhombic one. Two microscopic mechanisms of such a stabilization, associated with the one-electron crystal field and electron correlation interactions, are discussed. The flexibility of the orbital degrees of freedom is analyzed in terms of the magnetic-state dependence of interatomic magnetic interactions.Comment: 23 pages, 13 figure

    Block bond-order potential as a convergent moments-based method

    Get PDF
    The theory of a novel bond-order potential, which is based on the block Lanczos algorithm, is presented within an orthogonal tight-binding representation. The block scheme handles automatically the very different character of sigma and pi bonds by introducing block elements, which produces rapid convergence of the energies and forces within insulators, semiconductors, metals, and molecules. The method gives the first convergent results for vacancies in semiconductors using a moments-based method with a low number of moments. Our use of the Lanczos basis simplifies the calculations of the band energy and forces, which allows the application of the method to the molecular dynamics simulations of large systems. As an illustration of this convergent O(N) method we apply the block bond-order potential to the large scale simulation of the deformation of a carbon nanotube.Comment: revtex, 43 pages, 11 figures, submitted to Phys. Rev.

    Tight-binding parameters for charge transfer along DNA

    Full text link
    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The π\pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the π\pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons, which probably indicates that hole transport along DNA is more favorable than electron transport. Our findings are also compared with existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table

    Two-Point Functions and Boundary States in Boundary Logarithmic Conformal Field Theories

    Full text link
    Our main aim in this thesis is to address the results and prospects of boundary logarithmic conformal field theories: theories with boundaries that contain the above Jordan cell structure. We have investigated c_{p,q} boundary theory in search of logarithmic theories and have found logarithmic solutions of two-point functions in the context of the Coulomb gas picture. Other two-point functions have also been studied in the free boson construction of BCFT with SU(2)_k symmetry. In addition, we have analyzed and obtained the boundary Ishibashi state for a rank-2 Jordan cell structure [hep-th/0103064]. We have also examined the (generalised) Ishibashi state construction and the symplectic fermion construction at c=-2 for boundary states in the context of the c=-2 triplet model. The differences between two constructions are interpreted, resolved and extended beyond each case.Comment: Ph.D. Thesis (University of Oxford), 96 pages, the layout is modified from the origina

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore