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The theory of a bond-order potential, which is based on the block Lanczos algorithm, is presented within an
orthogonal tight-binding representation. The block scheme handles automatically the very different character of
s andp bonds by introducing block elements, which produces rapid convergence of the energies and forces
within insulators, semiconductors, metals, and molecules. The method gives the first convergent results for
vacancies in semiconductors using a moments-based method with a low number of moments. Our use of the
Lanczos basis simplifies the calculations of the band energy and forces, which allows the application of the
method to the molecular dynamics simulations of large systems. As an illustration of this convergent O(N)
method we apply the block bond-order potential to the large-scale simulation of the deformation of a carbon
nanotube.

I. INTRODUCTION

To understand mesoscale and macroscale phenomena
from the atomistic level is an important subject in computer-
aided materials modeling. This challenging study is not only
intended as a realistic search for useful materials, but also for
finding novel cooperative phenomena involving many atoms
within large systems. Computer simulations of materials
have inevitably promoted the development of efficient algo-
rithms for dealing with long-time-scale phenomena. These
methods have developed via two different approaches. The
first, based on continuum mechanics, is a hybrid approach
that combines continuum mechanics with atomistic
simulations.1,2 The second more directly applies the molecu-
lar dynamics~MD! simulation to large systems by reducing
computational effort. The progress in these two approaches
will enable us to bridge microscale and macroscale phenom-
ena. In this paper we address the latter approach.

Atomistic simulations should be founded on a quantum-
mechanical model in order to simulate a wide range of ma-
terials within a single framework, since the electronic struc-
ture determines the energy and the forces on atoms. The
local-density approximation~LDA ! to density functional
theory3–5 and semiempirical methods such as the tight-
binding ~TB! approximation6,7 reduce the complicated quan-
tum many-body interaction in condensed matter to a single-
electron problem. The resultant theory has been applied to a
variety of problems in materials science. However, it exceeds
the capacity of modern computers to treat large systems that
include thousands of atoms, using widely known methods for
solving the single-electron problem such as the conjugate-
gradient method, since the computational effort scales as the
third power of the system size.

Therefore, several efficient methods with linear scaling
algorithms have been proposed during the last decade.8–20

These O(N) methods can be roughly divided into two cat-
egories: variational methods and moments-based methods.
The former are the density matrix~DM! methods19,20and the
localized orbital ~LO! methods,16–18 which lead to linear
scaling algorithms from the localization of the density matrix
and the Wannier functions, respectively. The latter include
the bond-order potential~BOP! method8–12 and the Fermi
operator expansion~FOE! method,13,14 which are intrinsi-
cally linear in the scaling of the computational effort because
the enegy and forces are expanded in a finite moment expan-
sion. Several applications of these variational methods have
already been performed for large systems, which have shown
the power of these O(N) methods.21–23 However, several
problems remain in these O(N) methods.

First, it is well known that the variational O(N) methods
produce large errors in the energy of metallic systems with
these long-range correlations in the density matrix.24 In these
cases there is no justification for cutting the matrix elements
off at short distances in the density matrix. Unfortunately, if
the cutoff distance is increased to decrease the error in the
energy, then the calculation effort increases significantly.

Second, it is well documented that within moments-based
methods, the vacancy in diamond or silicon cannot be de-
scribed within a low number of moments~about 20!.24,25 A
very large number of moments~about 200! is needed to re-
produce the correct vacancy formation energy.26 In the BOP
method the forces become exact as the bond orders converge
to the exact values. This implies that the forces are not con-
sistent with the total energy if the recursion is terminated at
a finite number of levels. In the other moments-based meth-
ods, such as the FOE method13,14 and the global density of
states method,12,27 the exact forces can be calculated. How-
ever, these methods are also unable to reproduce the vacancy
formation energy within a low number of moments.24

Any robust O(N) method should satisfy the following cri-
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teria. First, the method should give accurate energies for a
wide range of materials~insulators, semiconductors, metals,
and molecules! with minimum computational effort. Second,
the Hellmann-Feynman forces should be consistent with the
total energy at any useful level of approximation. Third, the
algorithm should be suitable for parallel computation.

Our goal is to establish the BOP method as an O(N)
method that satisfies these three criteria. In Secs. II and III,
we present the theory of the block BOP10 within the orthogo-
nal TB representation. We stress that the introduction of
block elements into the BOP formalism improves remark-
ably the accuracy of the energy and forces. In Sec. IV we
analyze the vacancy formation energy of diamond carbon in
terms of the bond order and discuss the reason why the block
BOP gives accurate energies in covalent materials with a low
number of moments. In the remainder of this paper the de-
formation of a single-wall carbon nanotube is used to dem-
onstrate the applicability of the method to large-scale atom-
istic simulations.

II. THEORY

A. Tight binding

We develop the block BOP within the two-center or-
thogonal TB representation.7,28 It will be assumed that the
basis set is an orthonormal set of atomiclike orbitalsu ia&,
where i is a site index anda an orbital index. The Hamil-
tonian can be represented by the matrixHia, j b5^ iauĤu j b&.
The on-site elements of the matrix are written ase ia . The
cohesive energy, assuming that the electrons are at a finite
temperatureT, is the sum of bond, promotion, and repulsive
energies:

Ecoh5Ebond1Eprom1Erep, ~1!

where the repulsive energy is given by the sum of pair po-
tentials or embedded potentials that are usually determined
so that the TB model reproduces equilibrium structures and
elastic constants. The bond energy is the attractive contribu-
tion that leads to cohesion. There are two different but
equivalent expressions that describe the bond energy. The
first gives the bond energy in terms of theon-sitedensity of
states as follows:

Ebond52(
ia

E ~E2e ia!nia~E! f S E2m

kBT DdE, ~2!

wherenia(E) is the density of states projected onto orbital
u ia&, and the functionf (x)51/@11exp(x)# is the Fermi
function. The second gives the bond energy explicitly in
terms of the individualintersitebond energies as follows:

Ebond5
1

2 (
iaÞ j b

~2Q ia, j bH j b,ia!, ~3!

where Q ia, j b is the bond order between orbitalsu ia& and
u j b&, and the expression in parentheses represents the corre-
sponding bond energy associated with orbitalsu ia& andu j b&.
This allows us to interpret the bonding and structure of mol-
ecules and solids from a chemical point of view.29 It should
be noted that the bond order is not pairwise but is determined
by the particular arrangement and connectivity of the atoms

adjacent to the two atoms forming the bond. In the block
BOP representation the two different expressions Eqs.~2!
and~3! for the bond energy are exactly identical at any level
of approximation. The proof will be given in a later subsec-
tion. The promotion energy is defined by

Eprom5(
ia

~e iaNia2e ia
0 Nia

0 !, ~4!

whereNia andNia
0 are the number of electrons inu ia& in the

condensed and free atomic systems, respectively. The pro-
motion energy is repulsive due to the excitation of electrons
from their free atomic ground state as the atoms are brought
together. Therefore, the cohesive energy of a system is de-
termined by the balance between the attractive bond energy
and the repulsive pairwise/embedding and promotion ener-
gies. The bond and promotion energies can be repartitioned
into the band and atomic energies:

Ebond1Eprom5 (
iaÞ j b

Q ia, j bH j b,ia1(
ia

~e iaNia2e ia
0 Nia

0 !

5 (
ia, j b

Q ia, j bH j b,ia2(
ia

e ia
0 Nia

0

5Eband2Eatoms. ~5!

Eband is equal to the energy that is defined by integrating
( iaEnia(E) up to the Fermi level.

In the TB model the single-particle eigenfunctions are ex-
panded in a basis set that is an orthonormal set of real atomi-
clike orbitals:u ia&,

uf&5(
ia

Cia
(f)u ia&, ~6!

where the expansion coefficients are defined byCia
(f)

[^ iauf&. Cia
(f) is always real because of real atomic orbitals

and Hamiltonian. Then the bond orders may be defined in
terms of the expansion coefficients as follows:

Q ia, j b52(
f

Cj b
(f)Cia

(f) f S e (f)2m

kBT D , ~7!

where the factor 2 accounts for spin degeneracy.e (f) is the
eigenvalue corresponding to an eigenstateuf&.

The force on atomk is obtained by differentiating Eq.~1!
with respect to atomic positions:

Fk52
]Ecoh

]r k

52 (
ia, j b

S ]Q ia, j b

]r k
H j b,ia1Q ia, j b

]H j b,ia

]r k
D2

]Erep

]r k
. ~8!

The first term of Eq.~8! is identically zero in insulators at
zero electronic temperature so that

Fk52 (
ia, j b

Q ia, j b

]H j b,ia

]r k
2

]Erep

]r k
, ~9!

where the first term of Eq.~9! is the Hellmann-Feynman
force. If the bond orders are approximate values, then the
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sum of the derivatives of the bond orders with respect to
atomic positions will not be zero, so that Eq.~8! gives the
exact force that is consistent with the total energy in insula-
tors at zero temperature. In insulators and metals at nonzero
temperature, on the other hand, the sum is not alway zero.
However, in the block BOP representation the forces are
given by Eq.~9!, since it is very difficult to evaluate the
derivatives of the bond orders. Hence, the forces calculated
by block BOP become exact as the bond orders converge to
the exact values. In Sec. II the compatibility between the
force and the energy will be discussed from numerical tests
using constant energy molecular dynamics simulations.

Although the forces are not consistent with the total en-
ergy in the usual BOP methods, it is possible to evaluate the
exact forces at any level of approximating by the other mo-
mentsbased method, the global density of states method.27

However, the use of the global moments, which are intro-
duced to decrease the computational effort, leads to a re-
duced rate of convergence of the energy as a function of the
number of moments. In the Appendix of this paper we
present a novel method to evaluate the exact forces.

B. Block bond-order potential

The local density of states and bond orders can be related
to the one-particle Green’s functions. The one-particle
Green’s function operator is defined by

Ĝ~Z!5~Z2Ĥ !21

5(
f

uf&^fu

Z2e (f)
. ~10!

Then the imaginary part of the diagonal elements of the
Green’s function matrix give the local density of states:

Im Gia,ia~E1 i01!5(
f

201^ iauf&^fu ia&

~E2e (f)!21~01!2

52p(
f

~Cia
(f)!2d~E2e (f)!

52pnia~E!.

Therefore

nia~E!52
1

p
Im Gia,ia~E1 i01!, ~11!

where Gia,ia(Z)5^ iauĜ(Z)u ia&, 01 represents a positive
infinitesimal, andd(x) is the delta function. The imaginary
part of the off-diagonal elements of the Green’s function
matrix has the following relation to the expansion coeffi-
cients of the single-particle eigenfunctions:

Im Gia, j b~E1 i01!52p(
f

Cj b
(f)Cia

(f)d~E2e (f)!.

~12!

Multiplying the both sides of Eq.~12! by the Fermi function
and integrating with respect to the energy, we obtain the
following useful expression for the bond order:

ImE Gia, j b~E1 i01! f S E2m

kBT DdE

52p(
f

Cj b
(f)Cia

(f)E d~E2e (f)! f S E2m

kBT DdE

52p(
f

Cj b
(f)Cia

(f) f S e (f)2m

kBT D
52

p

2
Q ia, j b .

Therefore

Q ia, j b52
2

p
ImE Gia, j b~E1 i01! f S E2m

kBT DdE. ~13!

The evaluations of the bond energy Eqs.~2! and ~3! require
calculating the local density of states and bond orders. We
obtain the local density of states and bond orders from the
Green’s function through Eqs.~11! and ~13!. The diagonal
elements of the Green’s function matrix can be calculated in
a numerically stable way by the recursion method.30,31Block
BOP is a general recursion method for evaluating efficiently
both the diagonal and off-diagonal elements of the Green’s
function matrix by the recursion method. The first step of the
recursion method is to tridiagonalize the Hamiltonian using
the Lanczos algorithm.32 In the block BOP we introduce the
block Lanczos algorithm with the starting state as a single
site containing all the valence orbitals rather than the usual
scalar Lanczos algorithm with a single starting orbital.10

However, the application of the conventional block
algorithm33,34 to finite systems such as molecules introduces
a numerical instability, since the terminal number of recur-
sion levels of thep bond are different from that of thes
bond in the recursive algorithm. Therefore, we modify the
conventional block Lanczos algorithm. A series of proce-
dures for the modified block Lanczos algorithm can be car-
ried out as follows:

uU0)5~ u i1&,u i2&, . . . ,u iM i&), ~14!

An5~UnuĤuUn!, ~15!

ur n)5ĤuUn)2uUn21) tBn2uUn)An , ~16!

~Bn11!25~r nur n!, ~17!

~ln!25 tVn~Bn11!2Vn , ~18!

Bn115ln
tVn , ~19!

~Bn11!215Vnln
21 , ~20!

uUn11)5ur n)~Bn11!21. ~21!

An andBn are recursion block coefficientsMi3Mi in size,
where Mi is the number of atomic orbitals on the starting
atom i, and the underline indicates that the element is a
block.

The statesuUn)5(uLn1&,uLn2&, . . . ,uLnMi
&) represent the

Lanczos basis, and are orthonormal and block-tridiagonalize
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the Hamiltonian. The modified algorithm gives different ex-
pressions for the block elementsBn11 and these inverses
compared with the conventional algorithm. The block ele-
ments in the conventional block Lanczos algorithm are de-
fined by

Bn115Vnln
tVn , ~22!

~Bn11!215Vnln
21tVn . ~23!

The failure in the conventional algorithm can be illustrated
by a carbon trimer with a linear chain structure along thex
axis. If the block Lanczos algorithm is applied with the cen-
tral atom in the trimer as the starting state, then thepy andpz
orbitals span two independent subspaces. Thus, the recursive
algorithm finishes after only one iteration for the Lanczos
vectors concerned with thepy andpz orbitals. This gives two
zero eigenvalues in the four eigenvalues of the block element
(B2)2. Then one cannot evaluate the inverse ofB2 using Eq.
~23!. Therefore, definingB2 and its inverse by the modified
equations~19! and ~20!, respectively, and assuming that the
diagonal elements ofl1

21 corresponding to the zero eigen-
values are zero, we have

B2~B2!215S 1

1

0

0

D , ~24!

~U2uU2!5S 1

1

0

0

D . ~25!

uU2) is reduced to the state with two vectors, while the start-
ing stateuU0) is constructed by the four vectors, which per-
mits us to iterate once more with the recursive algorithm.
The conventional block Lanczos algorithm does not satisfy
both Eqs.~24! and~25!, since the block elementsB2 and the
inverse are obtained from the unitary transformations ofl1
and the inverse, respectively. Therefore, the conventional al-
gorithm terminates at this recursion level even though the
Lanczos vectors for thes orbital can still hop. This reduction
of the state avoids the numerically instabilities for the case of
small eigenvalues of (Bn11)2, even when the eigenvalues are
not zero.

Application of the block Lanczos algorithm defines an
orthonormal basis set called the Lanczos vector or basis. The
Lanczos vectors reflect the neighboring atomic arrangement
of the starting site. In Fig. 1 we show the Lanczos vectors on
ans-valent square lattice. The Lanczos vectors spread gradu-
ally from the central atom as the number of recursion levels
increases. Thus, we now expand a one-electron eigenstate
using the Lanczos vectors

uf&5(
nn

Dnn
(f)uLnn&, ~26!

whereDnn
(f)[^Lnnuf&. Then the representation based on the

atomic basis can be transformed into that of the Lanczos
basis set by the matrixU such that

TL5 tUTU, ~27!

whereU is defined by^ iauLnn&, and T can be the Hamil-
tonian H, the derivative of Hamiltonian with respect to
atomic position]H/]r i , the bond orderQ, or the Green’s
function G(Z) matrix. The indexL indicates the representa-
tion based on the Lanczos basis. Equation~27! is a
pseudounitary transformation, and the matrixU becomes
unitary when the number of the recursion levels is infinity in
infinite systems. If the block Lanczos algorithm is started
through Eq.~14! with the atomic orbitals on atomi as the
starting state, then considering Eq.~27! and the orthonormal-
ity of the Lanczos basis, we can relate the bond orders in the
Lanczos basis representation to the bond orders based on the
atomic basis by the following simple relation:

Q i j 5(
n

Q0n
L tUn j , ~28!

whereQ i j andQ0n
L are the block elements of the bond orders

for the atomsi and j and the statesuU0) and uUn), respec-
tively. For example,Q i j signifies

Q i j 5S Q i1,j 1 Q i1,j 2 ••• Q i1,jM j

Q i2,j 1 Q i2,j 2 ••• Q i2,jM j

. . . . . . . . . . . .

Q iM i , j 1 Q iM i , j 2 ••• Q iM i , jM j

D , ~29!

whereMi andM j are the numbers of atomic orbitals includ-
ing atomsi andj, respectively. In Eq.~28! tUn j , which is the
(n, j ) block element of the matrixtU, is defined by

tUn j5S ^Ln1u j 1& ^Ln1u j 2& ••• ^Ln1u jM j&

^Ln2u j 1& ^Ln2u j 2& ••• ^Ln2u jM j&

. . . . . . . . . . . .

^LnMi
u j 1& ^LnMi

u j 2& ••• ^LnMi
u jM j&

D .

~30!

The simple relation Eq.~28! allows us to evaluate the bond
order in terms of the Lanczos basis representation. We have
only to calculate the zeroth block line, which is the bond
orders between the starting atom and the Lanczos vectors
surrounding the atom, of the bond-order matrix. In the block

FIG. 1. The Lanczos vectors on thes-valent square lattice.~a!,
~b!, and ~c! are an initial stateuL0&, uL1&, and uL2&, respectively.
The diameter of the circles is proportional to the magnitude of the
expansion coefficient in the Lanczos vector.
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BOP the bond orders are evaluated in the Lanczos basis rep-
resentation, and then we get the bond orders based on the
atomic basis from Eq.~28!.

It is essential to start the block Lanczos algorithm with a
single site as in Eq.~14!. Although it is possible to derive an
analogous transformation to Eq.~28! using the usual scalar
Lanczos algorithm, the bond energy of the system depends
on the rotation of the system.34 Thus, the use of the scalar
algorithm is not appropriate, since the bond energy should be
invariant to the rotation of the system. We could also start
the recursion with a cluster containing a neighbor shell of
atoms instead of a single site.33 However, this choice is un-
suitable because it is highly computationally intensive.

In the Lanczos representation the Hamiltonian is block-
tridiagonalized:

~UmuĤuUn!55
An if m5n,
tBn if m5n21,

Bn11 if m5n11,

0 otherwise.

~31!

The block elementG00(Z)5(U0uĜuU0) can be written ex-
plicitly by the form of the multiple inverse, since the Green’s
function matrixG(Z) is the inverse of the matrix (ZI2H).
Appling repeatedly the partitioning method,35,36 which is a
method for calculating the inverse of matrices, to the matrix
(ZI2H), we get

G00
L ~Z!5@ZI 2A02 tB1@ZI 2A12 tB2@•••#21B2#21B1#21.

~32!

G00
L (Z) is equal to the block elementGii (Z) based on the

atomic basis, since we have started the block Lanczos algo-
rithm with Eq.~14!. Therefore, the local density of states can
be evaluated from the diagonal elements by Eq.~11!. Also
the trace ofG00

L (Z) gives the local density of states on atom
i.

Moreover, by taking account of the block-tridiagonalized
Hamiltonian and the identity (ZI2H)G(Z)5I in the Lanc-
zos basis representation, the off-diagonal elements of the
Green’s function matrixG0n

L may be obtained from the fol-
lowing recurrence relation:

G0n
L ~Z!5@G0n21

L ~Z!~ZI 2An21!

2G0n22
L ~Z! tBn212d1nI #~Bn!21, ~33!

whered is the Kronecker’s delta, andG021(Z) and tB0 are
0. All the off-diagonal block elementsG0n

L (Z) are related to
the diagonal block elementG00

L (Z). OnceG00
L (Z) has been

obtained, the off-diagonal block elements are easily evalu-
ated from the above recursive relation. The simplicity of
evaluating the off-diagonal block elements is an important
advantage of the Lanczos basis representation. The block
elements of the Green’s function matrix have the same rela-
tion to the bond orders based on the Lanczos basis as that of
the atomic basis representation:

Q0n
L 52

2

p
ImE G0n

L ~E1 i01! f S E2m

kBT DdE. ~34!

In case the bond orders are evaluated by Eqs.~28! and~34!,
we can prove that the two different expressions Eqs.~2! and
~3! for the bond energy are identical at any level of approxi-
mation. Consider the trace ofG(Z)(ZI2H). Transforming
the trace of the atomic basis representation into that of the
Lanczos basis using Eq.~27!, and making use of the identity
G(Z)(ZI2H)5I in the Lanczos basis representation, we
see that the trace is a constant:

tr$G~Z!~ZI2H !%

5(
i

tr$ZGii ~Z!%2(
i j

tr$Gi j ~Z!H ji %

5(
i

tr$ZG00
L( i )

~Z!%2(
in

tr$G0n
L( i )

~Z!Hn0
L( i )

%

5(
i

tr~ I ( i )!, ~35!

whereI i is a unit matrix withMi3Mi in size. The indexL ( i )

indicates the representation based on the Lanczos basis with
the starting state on atomi. Considering the imaginary parts
of the trace, we have

Im(
ia

ZGia,ia~Z!5Im (
ia, j b

Gia, j b~Z!H j b,ia . ~36!

We see that the two expression for the bond energy give the
same energy, since the Green’s functions can be related to
the local density of states and bond orders through Eqs.~11!
and ~13!, respectively. The block BOP, thus, provides the
equivalence of the two expressions for the bond energy in a
natural way, whereas in the usual BOP the Green’s functions
need a carefully chosen truncator in order to satisfy the sum
rule.9

C. Moment description

The moments of the local density of states allow us to link
the behavior of the electronic structure to the local topology
about the given site.11,12,29We now discuss the relation be-
tween the block recursion matrices and the moments of the
density of states. From Eq.~10! for uZu→`, the diagonal
elementG00

L (Z) can be rewritten as follows:

G00
L ~Z!5(

f

~U0uf&^fuU0!

Z2e (f)

5(
f

d00
(f)S (

p50

`
~e (f)!p

Zp11 D 5 (
p50

` m00
(p)

Zp11
, ~37!

where

d00
(f)5S Di1

(f)Di1
(f) Di2

(f)Di1
(f)

••• Dip
(f)Di1

(f)

Di1
(f)Di2

(f) Di2
(f)Di2

(f)
••• Dip

(f)Di2
(f)

. . . . . . . . . . . .

Di1
(f)Dip

(f) Di2
(f)Dip

(f)
••• Dip

(f)Dip
(f)

D ,

~38!
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m00
(p)5(

f
d00

(f)~e (f)!p, ~39!

andm00
(p) is the block element of thepth moment for the atom

i, the diagonal elements of which give thepth moments of
the projected density of statesnia(E). Thus, Eq.~37! is the
moment expansion of the Green’s functionG00

L (Z). Also the
pth block moment can be evaluated explicitly as the expec-
tation value of thepth power of the Hamiltonian in terms of
the block elementsAn , Bn :

m00
(p)5~U0uĤpuU0!

5 (
m1•••mp21

~U0uĤuUm1
!

3~Um1
uĤuUm2

!•••~Ump21
uĤuU0!. ~40!

The first few block moments are

m00
(0)5I ,

m00
(1)5A0 ,

m00
(2)5~A0!21 tB1B1 . ~41!

From Eq.~40! we see that thepth moment is the sum over all
self-returning paths of lengthp. The first moment corre-
sponds to a hop on a single site, the second to nearest neigh-
bors and back, and so on. Thus, the atomic connectivity can
be related directly to the electronic structure through the de-
scription of the Green’s function by the moments.

Multiplying both sides of Eq.~37! by (E101) r , and in-
tegrating with respect to the energyE we get the following
relation:

2
1

p
ImE

2`

`

ErG00
L ~E101!dE5m00

(r ) . ~42!

This relation means that the imaginary part of the moment of
the block-diagonal element in the Green’s function matrix is
equal to the moment of the Hamiltonian.

Let us define the orthogonal block polynomialsPn(x):

xPn~x!5Pn~x!An1Pn21~x! tBn1Pn11~x!Bn11 , ~43!

whereP21(x) andP0(x) are the zero matrix0 and the unit
matrix I with Mi3Mi in size. By using the block polynomi-
als the recursion block elementsAn andBn can be expanded
with the moments:

An5~UnuHuUn!

5 tPn~Ĥ !~U0uĤuU0!Pn~Ĥ !

5 (
m

2n11

amm00
(m)a8m , ~44!

Bn5~UnuHuUn21!

5 tPn~Ĥ !~U0uĤuU0!Pn21~Ĥ !

5(
m

2n

bmm00
(m)b8m . ~45!

In the derivations of Eqs.~44! and~45! we have assumed the
substitution. uU0)Ĥ→ĤuU0) and Ĥ(U0u→(U0uĤ. The
block coefficientsam , am8 , bm , and bm8 are given by the
recursion block elements. For exampleA1 and B1 can be
written as follows:

A15~ tB1!21$m00
(3)2A0m00

(2)2m00
(2)A01A0m00

(1)A0%~B1!21,
~46!

B15~ tB1!21$m00
(2)2A0m00

(1)%. ~47!

In case the recursion in the block Lanczos algorithm is ter-
minated at theqth level, the diagonal block element of the
Green’s function matrix can be expanded with the (2q11)th
moments, because it is constructed by the multiple inverse
with the recursion block elementsAn(n50 –q), Bn(n
51 –q) given by theqth recursion. As shown in Eqs.~44!
and~45!, the recursion block elements are expanded in terms
of the moments. Thus,G00

L contains the zeroth to (2q11)th
moments. This implies that up to the (2q11)th moment is
included in the sum of the moment expansion Eq.~37!, and
Eq. ~42! satisfies forr<2q11.

To obtain the moments for the off-diagonal elements of
the Green’s function matrix, multiplying both sides in Eq.
~33! by (E101) r and integrating with respect to the energy
E, we have

ImE
2`

`

ErG0n
L ~E101!dE

5 (
m50

n S ImE
2`

`

Er 1mG00
L ~E101!dED cm ,

~48!

where the block coefficientscm can be written in terms of the
recursion block elements. As mentioned above the right side
of Eq. ~48! is equal to the moment of the Hamiltonian for
r 1m<2q11, so that the left side gives the exact moment
m0n

(r ) for r<2q112n. This means that the off-diagonal ele-
ments of the Green’s function matrix can be expanded with
up to the (2q112n)th moment, which results in the expan-
sion of the bond orderQ0n

L by up to the (2q112n)th mo-
ment. Moreover, we can relate the bond orders in the atomic
basis representation to the moments through the transforma-
tion Eq.~28!. In the right side of Eq.~28! the bond orderQ0q

L

for n5q determines the maximum order of the moments for
the bond orders based on the atomic basis. So we see that the
bond orders in the atomic basis representation can be ex-
panded with the moments forr<q11. Thus, in the block
BOP the off-diagonal elements of the Green’s function ma-
trix can be constructed with the moments forr<q11, while
the diagonal elements have the information of the moments
for r<2q11. This could imply the difference in the conver-
gence properties of the bond energy and the forces. After a
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simple consideration it is estimated that the rate of the con-
vergence of the force is about half as fast as that of the bond
energy in terms of recursion levels. However, it should be
noted that the contribution ofQ0n

L to Q i j decreases as the
recursion leveln increases, since the Lanczos vectors, which
hop repeatedly in the atomic connectivity, have their weight
away from the starting atom as the recursion leveln in-
creases. Thus, the bond orders in the atomic basis represen-
tation do not have all the moments of the higher order more
than the (q11)th, but can include the higher moments
through theG0n

L for n,q. In this case, whereas the inexact
moments forr<2q112n are included in the bond order in
the atomic basis representation, the error can be negligible,
since the bond ordersQ0n

L become small as the recursion
level n increases. So it is stressed that the higher moments
can be included in the bond order based on the atomic basis
through the Green’s functionG0n

L for small recursion levels
n. Therefore, it is expected that the forces should be compa-
rable to the bond energy in terms of the convergence rate. In
Sec. III we will discuss this point again numerically.

D. Details on implementation

The technical details to implement the block BOP are
given in this subsection. For an infinite system, there could
be an infinite number of levels in the multiple inverse of the
diagonal Green’s function. It is often the case, however, that
the exact values can be replaced by estimated values after a
certain number of levels, without reducing the accuracy sig-
nificantly. The simplest approximation is to takeAn5A` ,
Bn5B` for n.nt , wherent is the number of exact levels,
and A` and B` are constant block elements. This approxi-
mation is reasonable from the observation that the scalar el-
ements in bothAn and Bn converge to constant values or
oscillate around constant values asn tends to infinity.34 We
have only to replace the level forn5nt11 in the multiple
inverse with the terminator, since the constant terms can be
summed exactly. The terminator can be written by a closed
form including itself as follows:

T~Z!5@ZI 2A`2 tB`T~Z!B`#21. ~49!

However, this is still a difficult set of equations to solve, so
to simplify matters we assume that the off-diagonal elements
of T(Z) are zero and all the diagonal elements are the same,
since the differences between the diagonal elements ofAn
andBn become small as the number of the recursion levels
increases, respectively. Then the identical diagonal element
t(Z) of T(Z) is written as the square-root terminator:

t~Z!5@Z2a2b2t~Z!#215
1

b
FZ2a

2b
2 iA12S Z2a

2b
D 2G ,

~50!

wherea andb2 are given by the means of the diagonal ele-
ments ofAnt

and Bnt

2 , respectively. Thus, we see that the

effect of the terminator is to smear out the sharp states with
energya into semielliptical bands. The degree of smearing is
given byb.

There are two ways to conserve charge neutrality in the
system: local charge neutrality7 ~LCN! or the total charge

neutrality10 ~TCN!. Within LCN the on-site energies are var-
ied ~keeping the splitting between on-sites and p energy
levels fixed! in order to conserve the number of electrons on
each atom. If the excess charge on sitei is Qi5Zi
2(aNia , where Zi is the effective core charge, then the
on-site energies can be shifted using the response function
Xi5(aXia for atom i as follows:

e ia8 5e ia2l
Qi

Xi
, ~51!

wherel is a parameter to accelerate the convergence, and
generally is 1.0. The response function projected on an
atomic orbitalia is given by

Xia5
2

p
ImE @Gia,ia~E1 i01!#2f S E2m

kBT DdE. ~52!

Usually no more than three or four iterations are required to
achieve the convergence so that the absolute value of
Q/atom is below 1025, sinceXia.]Nia /]e ia . The assump-
tion of LCN has the advantage that the Madelung energy
contribution is zero, so that the TB model need not take this
into account in its expression for the energy. Also LCN is
suitable for parallel computation, since the calculations of
the bond energy and the forces of each atom are perfectly
independent within the assumption. However, LCN brings an
inefficiency in terms of computational effort, since LCN re-
quires the Lanczos algorithm to be implemented again, after
the charge neutralities of all the atoms has been achieved,
since the recursion block elements are varied by the shift of
the on-site energies. Thus, the block Lanczos algorithm and
the shift of the on-site energies must be repeated until self-
consistency is accomplished. This self-consistency requires
typically 20 iterations. This discourages us from applying
LCN in the molecular dynamics simulations. On the other
hand, we can conserve the total number of electrons in the
system by a shift of the chemical potential in terms of TCN.
If the excess charge of the system isQ5( iQi , then a good
approximation of the chemical potential is given by

m85m1l
Q

X
, ~53!

where X5( iXi . The convergence is achieved after only
three or four iterations. The TCN assumption, corresponding
to the microcanonical distribution, has a physically appropri-
ate meaning, which is consistent with the usual electronic
structure calculations by diagonalization. Moreover, within
TCN we need not repeat the Lanczos algorithm, since the
recursion block elements are not varied by the shift of the
chemical potential. Thus, TCN has a considerable advantage
in terms of computational effort. The TCN condition reduces
the separability of individual atoms in the calculations of the
band energy and forces, and complicates slightly the ability
to structure the program code in parallel form. However, the
evaluation and integration of the Green’s function, which are
time-consuming steps, are performed separately. Therefore,
we use the TCN constraint to conserve the total number of
electrons.

It is required to integrate the Green’s functions with the
Fermi function in order to evaluate the bond energy, bond
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orders, and response functions. The integration can be car-
ried out in the complex plane by summing up an infinite
series over the modified Matsubara poles.11,12,37The general
form can be given as follows:

ImE A~E1 i01! f ~x!dE52
2p

b
ReF lim

P→`
(
p50

P21

zpA~Ep!G ,

~54!

with

Ep5m1
2P

b
~zp21!, zp5expS ip~2p11!

2P D , ~55!

whereA(x) is an arbitrary function defined in the complex
plane, andb51/kBT. Also Ep are the poles of the approxi-
mated Fermi function in the complex plane. This modified
Matsubara summation converges rapidly with about 40 com-
plex poles (P.40) with a high electron temperature (kBT
.0.1 eV), although many poles are needed to achieve the
convergence with a lower electron temperature. In the case
of systems with a gap between the valence and conduction
bands, we need to pay attention to the evaluation of the
chemical potential, since the response functions in the gap
become zero askBT tends to 0, so that it is difficult to esti-
mate the chemical potential under a low electron temperature
using Eq.~53!. This can be solved by smearing the density of
states under a high electron temperature. Thus, it is required
to evaluate the response functions at high electronic tempera-
tures in order to obtain stable MD simulations.

We now estimate the time dependence within the block
BOP. The total system is divided into finite clusters centered
on individual atoms in order to evaluate the energy and force
of each atom. The size of the finite cluster is not determined
by the size of the total system, but by the system and the
condition of the MD simulation. Therefore, the computa-
tional effort is proportional to the number of atomsNatom, so
that the number of computational operations can be written
ascNatom, wherec is a proportionality constant. The scaling
of the constantc can be estimated as a function of the num-
bers of recursion levelq, atoms within a finite clusternc ,
and orbitals on an atomM. For simplicity it is assumed that
the system consists of only one type of element withM or-
bitals. In the block Lanczos algorithm the time-consuming
step is the product of the Hamiltonian matrix and the vector,
so that the count of operations in the block Lanczos algo-
rithm is nearly proportional toqnc

2M . At the next step, the
inverses and recursive calculations are required to evaluate
the diagonal and off-diagonal elements of the Green’s func-
tion matrix, respectively, and their integrations are per-
formed as the sum of the residues for the poles in the com-
plex plane, so that the count of operations for the evaluations
is almost proportional toqPM3. Thus, the proportionality
constantc can be estimated ascLqnc

2M1cGqPM3, wherecL

andcG are prefactors of the count of operations for the block
Lanczos algorithm and the the evaluation of the bond orders,
respectively. The prefactors depend on the computer, the
system, and the criterion of charge neutrality. For example,
for the case of a three-hop cluster, 10 recursion levels, and
40 complex poles for diamond carbon, the calculation time

of the block Lanczos algorithm is comparable to that in
evaluating and integrating the Green’s functions.

In the remainder of this section the procedure for imple-
menting the block BOP is enumerated.

~I! The partition of the system. The hopping range of each
atom is determined by terminating the system. There are two
ways to terminate the system. One of them is the physical
truncation that the terminated cluster contains atoms within a
sphere with a certain cutoff radius. The physical truncation
can bring inaccurate properties into the convergence of the
energies, since atoms that have no bonding to other atoms
can be included in the neighborhood of the cluster surface.
Moreover, in MD simulations the energies can jump discon-
tinuously when an atom moves in or out of the surface of the
sphere. The more stable way is logical truncation. The clus-
ter of sizen is here defined by all neighbors that can be
reached byn hops. Provided the cutoff distance for the hop-
ping integral is identical to that defining the connectivity of
the bonding, the energies are continuous as a function of
time in MD simulations. Therefore, it is desirable to truncate
the system logically in terms of accuracy.

~II ! The block Lanczos algorithm. The Hamiltonians for
the individual terminated clusters are constructed. For these
small cluster Hamiltonians the block Lanczos algorithm Eqs.
~14!–~21! is applied.

~III ! The evaluations and integrations of the Green’s func-
tions. In the Lanczos basis representation the diagonal and
the off-diagonal elements of the Green’s functions are evalu-
ated using Eqs.~32! and ~33!, respectively, and then their
integrations are performed via the modified Matsubara sum-
mation with Eq.~54!.

~IV ! The transformation into the atomic basis representa-
tion. The bond orders based on the Lanczos basis are trans-
formed into those in the atomic basis representation using
Eq. ~28!.

~V! The bond energy and forces. From Eqs.~3! and ~9!
the bond energy and forces are evaluated, respectively.

III. CONVERGENCE PROPERTIES

O(N) methods with linear scaling algorithms are approxi-
mate approaches compared to the exact diagonalization for
dealing with large-scale systems, so that the realization of
the O(N) algorithms is accompanied by decreases in compu-
tational accuracy in exchange for computational efficiency.
Therefore, O(N) methods should only be applied to atomis-
tic simulations once their accuracy and efficiency has been
tested.

In the block BOP three approximations are introduced to
reduce the computational effort: the number of moments, or
recursion levels, the size of the cluster of atoms over which
the hops are made, and a finite number of poles in the modi-
fied Matsubara summation, which gives accurately integra-
tion of Green’s functions with the Fermi function within a
small number of poles. The finite approximations for the
number of levels and the size of the cluster can lead to the
errors in the energies and forces. Thus, we now investigate
the block BOP through several test calculations in terms of
its accuracy and efficiency. In order to ascertain applicable
bounds for a wide range of materials, the energy and force
convergence are examined for an insulator~carbon38 in the
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diamond structure!, a semiconductor~silicon39!, a metal~ti-
tanium, described by a canonicald-band model!, and a mol-
ecule ~benzene40! as functions of the number of recursion
levels and the size of cluster. In all the test calculations, we
have chosen the same value~40 poles! as the number of
poles in the modified Matsubara summation. The 40 poles is
enough to achieve convergence in carbon, silicon, titanium,
and benzene materials in case ofkBT50.1 eV used in all the
numerical tests.12 Moreover, in terms of the computational
efficiency the block BOP is compared withk-space calcula-
tions in computational time. Also as a test of the quality of
the forces, we perform a constant energy molecular dynam-
ics ~CEMD! simulation of carbon.

Figure 2 shows the cohesive energy per atom for carbon
in the diamond structure, silicon in the diamond structure,
hcp titanium, and benzene. The cohesive energies were cal-
culated using 2 –15 recursion levels~a numerical instability
often appears for.20 recursion levels! for three, five, and
seven shell clusters by the logical truncation method, where
the three-, five-, and seven-shell clusters for the diamond
structure include 41, 147, and 363 atoms, respectively, and
these clusters for the hcp structure contain 153, 587, and
1483 atoms, respectively. The cohesive energies for carbon
and silicon converge rapidly to the results ofk-space calcu-
lations. The errors for carbon and silicon are only 1% at six
recursion levels. Thus, we see that up to the 13th moment
corresponding to six recursion levels determine the cohesive
energies. The contribution of the higher-order moments is
unimportant, since the convergence properties are almost
identical for three-, five-, and seven-shell clusters. The cohe-

sive energy for silicon converges more slowly compared
with that of carbon in the rate of convergence for the size of
cluster. This suggests that a semiconductor such as silicon
requires a higher moment than an insulator such as carbon
for good convergence of the cohesive energy. The cohesive
energy for the metallic hcp titanium converges very quickly
in terms of the number of recursion levels. For the five and
seven shell clusters the cohesive energy converges fully to
thek-space result, while the convergence value for the three-
shell cluster is in error by 2% from thek-space result. For
benzene the convergence is achieved with a very small clus-
ter ~two shells!. The error at four recursion levels is only
0.1%. We see that the block BOP can evaluate accurately the
cohesive energy for a molecule with a sparse structure like
benzene, which has both localizeds bonds and delocalized
p bonds.

The calculation of the vacancy formation energy is a se-
vere test to distinguish the accuracy of different O(N) meth-
ods, since it is a criterion that tests the precision with which
the dangling bonds caused by the vacancy are handled by
O(N) method. In practice, the usual moment-based O(N)
methods fail to reproduce the vacancy formation energy of
carbon in the diamond structure even when dozens of mo-
ments are included.24,25 The computational error at 30 mo-
ments is still about 20% compared to thek-space result. In
Fig. 3 we show the vacancy formation energy for carbon in
the diamond structure, silicon in the diamond structure, and
hcp titanium. These are calculated as the difference between
the energy for a bulk unit cell~of 64, 64, or 32 atoms, re-
spectively! with a single atom removed, and the perfect bulk
cell energy scaled to 63, 63, or 31 atoms. The results are for

FIG. 2. The cohesive energy for carbon in the diamond struc-
ture, silicon in the diamond structure, hcp titanium, and benzene as
a function of number of recursion levels for three-, five-, and seven-
shell clusters, calculated using a square-root terminator, andkBT
50.1 eV.

FIG. 3. The vacancy formation energy for carbon in the dia-
mond structure, silicon in the diamond structure, and hcp titanium
for three-, five-, and seven-shell clusters as a function of number of
recursion levels, calculated using a square-root terminator, a total
charge neutrality, andkBT50.1 eV.
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an unrelaxed vacancy. The convergence properties for car-
bon and silicon are almost identical. The vacancy formation
energy in the five- and seven-shell clusters converges
smoothly toward thek-space results, while in the three-shell
cluster the converged values for carbon and silicon are 15%,
and 13% underestimated, respectively. In the seven-shell
cluster at 15 recursion levels the errors for carbon and silicon
are only 1%. Thus, we see that the block BOP gives an
accurate vacancy formation energy for strongly covalent ma-
terials such as carbon and silicon with the use of about 30
block moments. This remarkable result suggests that the
block BOP accurately describes dangling bonds in compari-
son with the usual moment-based methods. In Sec. IV we
will discuss the advantages inherent in the block BOP by
analyzing the vacancy formation energy in terms of different
bond-order contributions. For titanium the vacancy forma-
tion energy converges to thek-space result equally within the
three-, five-, and seven-shell clusters. The error for the three-
shell cluster at five recursion levels is about 6%. The va-
cancy formation energy oscillates with respect to the number
of recursion levels due to the long-range value of the density
matrix ~see Fig. 2 of Ref. 23!. The oscillations are damped
by imposing LCN instead of TCN to conserve the number of
electrons.

The accuracy of the forces is investigated from two dif-
ferent perspectives. The first is the accuracy when compared
to the exactk-space result; the second is the degree of cor-
respondence between the numerical and analytic Hellmann-
Feynman forces. In order to perform reliable MD simulations
the two criteria should be satisfied. In Fig. 4 we show thez
component of the force on an atom in the bulk-terminated

~001! surface of carbon, silicon, and hcp titanium and the
force on a hydrogen atom on benzene. For carbon the force
of the three-shell cluster overestimates by about 130% in
comparison with thek-space result, although the error in the
Hellmann-Feynman term is only 1%. The forces of the five-
and seven-shell clusters converge smoothly toward the
k-space result. The rate of convergence in silicon is much
better than that of carbon. Even the three-shell cluster shows
a converged value that differs by only 5% from thek-space
result. The three-, five-, and seven-shell clusters of Ti show
similar convergence properties of the forces, the converged
value being underestimated by about 8% compared with the
k-space result. For benzene the force converges rapidly with
small cluster size. As discussed in Sec. II the bond orders can
be expanded using the lower-order moments compared with
the density of states in the block BOP. It can be estimated
that the forces should converge more slowly at thek-space
results than the bond energies, since the forces on the atoms
are evaluated using the bond orders. However, these numeri-
cal results for the forces show that the convergence rate of
the force is comparable to that of the bond energy. This
means that the sum of Eq.~28! converges rapidly as the
number of the recursion levels increases because of the dif-
fusion of the Lanczos vectors.

As a test of the consistency between the total energy and
the forces, CEMD simulations have been performed for car-
bon. If the forces are equal to the derivative of the total
energy with respect to atomic positions, the total energy of
the system is conserved. Thus, the CEMD simulation is a
criterion to investigate the consistency of forces. In Fig. 5 we
show the energy for carbon at 1000 and 5000 K as a function
of time using five and ten recursion levels. The initial struc-

FIG. 4. Thez component of the force on an atom on the carbon
~001! surface, silicon~001! surface, titanium~001! surface, and on
a hydrogen atom in benzene for three-, five-, and seven-shell clus-
ters as a function of number of recursion levels, calculated using a
square-root terminator, total charge neutrality, andkBT50.1 eV.

FIG. 5. The potential, kinetic, and total energies as a function of
time for molecular dynamics simulations of carbon using a three-
hop logically truncated cluster, a square-root terminator, total
charge neutrality, andkBT50.1 eV. In panels~a! and ~b! the re-
sults are for five and ten recursion levels at 1000 K, respectively,
whereas in panels~c! and ~d! they are for five and ten recursion
levels at 5000 K, respectively. The time step is 0.5 fs.
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ture is the diamond lattice, and the unit cell is fixed in vol-
ume and shape. When the initial temperature of the system is
1000 K, the atoms oscillate around the equilibrium positions.
At five and ten recursion levels we see that the total energy is
almost conserved. When the temperature is raised to 5000 K,
the carbon in the diamond structure transforms into liquid
carbon with mainly a threefold-coordinate structure. From
Fig. 5 we see that the forces are of good quality at ten recur-
sion levels, while the total energy at five recursion levels
increases by about 10 eV during 1 ps, which corresponds to
a temperature increase of 1800 K. These results indicate that
the block BOP can give forces consistent with the total en-
ergy, provided the proper number of recursion levels is used,
even for liquid materials such as carbon at a high tempera-
ture. On the other hand, in the variational DM method, al-
though only the Hellmann-Feynman term survives formally
as the derivatives of the band energy with respect to atomic
coordinates, total energy of liquid silicon in the CEMD
simulation exhibits a steady upward drift.41

To study the computational efficiency of the block BOP
we carry out two benchmark tests: the comparison between
the block BOP and thek-space calculation in computer time,
and the relation between the computational error and the
computer time. Figure 6 shows the time to evaluate the en-
ergy and forces for a cell containing carbon in the diamond
structure as function of the number of atoms in the cell for
the block BOP andk-space using a singlek-point. The cross-
over point at which the block BOP becomes favorable is
about 100 atoms.

Figures 7~a! and 7~b! show the relation between the error
and the the time per atom to evaluate the energy and forces
in the calculations of the vacancy formation energy of dia-
mond carbon and hcp titanium, respectively. Here the in-
crease in time corresponds to the increase of the number of
recursion levels. We see that the block BOP can calculate the
vacancy formation energy to high accuracy within almost the
same computational time as the other moment-based results
reported by Bowleret al.,24 where the calculations were per-
formed using the same computational facilities. We note that
the block BOP has given a good convergent result of the
vacancy formation energy in diamond carbon for the first

time with a moments-based method, while the computational
time to achieve this convergence is still ten times slower than
that of the DM method. This work, therefore, still supports
the conclusions of the study in Ref. 23 that the DMM is best
for systems with energy gaps, but that moments-based meth-
ods such as BOP are best for metallic systems.

IV. ANALYSIS OF VACANCY FORMATION ENERGY

The block BOP can provide chemical insight into the na-
ture of the bonding in molecules and solids in terms of the
bond order. The bond order is a useful quantity indicating the
strength of bonding between two atoms. In practice, it is well

TABLE I. Comparison of the original and the reduced TB
method with respect to the predicted cohesive energies of carbon in
the perfect diamond structure and the diamond unit cell including
64 atoms with a single atom removed. The calculations were per-
formed with a logical truncation of a seven-shell cluster, 15 recur-
sion levels, a square-root terminator, local charge neutrality, and
kBT50.1 eV.

Perfect Vacancy Vacancy formation
~eV/atom! ~eV/atom! energy~eV!

Original
k space 27.251 27.091 10.110
BOP 27.249 27.090 10.004

Reduced
k space 27.254 27.098 9.860
BOP 27.256 27.100 9.783

FIG. 6. The time to perform the energy and the force evaluation
for carbon in the diamond structure as a function of number of
atoms in the cell for the block BOP, calculated using a three-hop
logically truncated cluster, andk space. The calculations were per-
formed on an IBM RS/6000 workstation.

FIG. 7. The error in the~a! carbon and~b! titanium vacancy
formation energies against the time taken per MD step per atom for
three-, five-, and seven-shell clusters. The calculations were carried
out with a square-root terminator, total charge neutrality, andkBT
50.1 eV on a HP9000/735 workstation.
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known that the bond length is nearly proportional to the bond
order for thep bonded hydrocarbons.42

In this section we analyze the vacancy formation energy
of carbon in the diamond structure in terms of the bond
order, and discuss the reason why the usual moment-based
methods cannot reproduce the vacancy formation energy
even with several dozens of moments.24,25 The reduced TB
model43–46is introduced in order to clarify the analysis of the
vacancy formation energy in terms of the two scalar bond
ordersQs and Qp , respectively. In the reduced TB model
the three independent bond integralshsss , hpps , and hsps

are reduced to the two independent variableshs and ps by
assuming thathsps is the geometric mean ofuhsssu and
hpps . This allows thes bond energy between atomsi, andj
to be written as the single quantitieshs(Ri j )Qs

i j rather than
the sum of three termshsssQsss , 2hspsQsps , and
hppsQpps , respectively. That is, we can write

Ebond
( i j ) 5Es

( i j )1Ep
( i j )

522hs
( i j )Qs

( i j )24hp
( i j )Qp

( i j ) , ~56!

where

hs5~11ps!uhsssu, ~57!

Qs5
Qsss12ApsQsps1psQpps

11ps
,

with ps5hpps /uhsssu. All the hopping integrals and bond
orders are defined as positive quantities. In addition, the cut-
off distance in the hopping integrals and repulsive potential
is reduced from 2.6 Å in the original TB fit38 to 2.5 Å. This
modification simplifies the analysis, because atoms on the
diamond lattice do not interact with second neighbors who
lie at a distance of 2.517 Å. The cutoff of 2.5 Å is applied
only to the energy calculations in this analysis of the vacancy
formation energy. Also we apply LCN to the analysis rather
than TCN, since chemical concepts like the promotion en-
ergy require the total number of electrons on a given atom to
be invariant as the atoms we brought together to form the
bond. In Table I we give the cohesive energy and vacancy
formation energy of carbon in the diamond structure calcu-
lated using the original TB and the reduced TB methods. The
changes in the cohesive and vacancy formation energies in-

troduced by the reduced TB simplifications are only 0.1%
and 3%, respectively. Therefore, it is an excellent approxi-
mation to analyze the vacancy formation energy using the
reduced TB method with LCN.

Figure 8 shows the diamond lattice with a vacancy. There
are four first-neighboring ~FN! and twelve second-
neighboring~SN! atoms about the vacancy. The 24 third-
neighboring atoms in total are grouped into two kinds of
atoms ~TN, TN8!, each of them including 12 atoms. The
number of valences and p electrons and the corresponding
promotion energy of the FN, SN, TN, and TN8 atoms are
given in Table II. The number of valences electrons on the
FN atom increases by about 6% compared with that of a
carbon atom in the perfect structure, which corresponds to an
increase of 0.27 electrons in total over the four FN atoms.
This increase in the number ofs electrons on the FN sites
reflects that thes component of the dangling bond is at-
tracted firmly at the core of the carbon. The number ofs
electrons on the SN, TN, and TN8 atoms, on the other hand,
is almost the same as that of the perfect structure. We see,
therefore, from Table II that 97% of the total change in pro-
motion energy resides in the FN shell of atoms about the
vacancy, so that the redistribution ofs and p valence elec-
trons occurs mainly within the first shell. The change in the
promotion energy stabilizes the vacancy by 1.858 eV.

Table III shows the bond orders and bond energies fors

TABLE II. The number of valences andp electrons and the promotion energies of the first-~FN!, second-
~SN!, and third-~TN, TN8) neighboring carbon atoms about a vacancy in the diamond structure.DEprom is
defined as the difference between the structure with a vacancy and the perfect structure in the promotion
energy.

Total Perfect FN SN TN TN8 Others

Ns 1.203 1.271 1.203 1.202 1.205
Np 2.797 2.729 2.797 2.798 2.795
Eprom(eV/atom) 5.334 4.886 5.342 5.344 5.328
DEprom(eV/atom) 20.448 0.008 0.010 20.006

Number of atoms 63 4 12 12 12 23
DEprom(eV) 21.858 21.793 0.097 0.115 20.076 20.201

DEprom

DEprom(Total)
3100(%) 100 96.5 25.2 26.2 4.1 10.8

FIG. 8. Diamond lattice with a vacancy. FN and SN label the
first- and second-neighboring atoms to the vacancy, respectively.
Two kinds of third-neighboring atoms are distinguished by TN and
TN8.
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andp bonds between the pairs of atoms FN-SN, SN-TN, and
SN-TN8, respectively, in the presence of a vacancy. Thes
bond order for FN-SN increases by 0.4%, whereas for
SN-TN and SN-TN8 bonds it decreases by 0.6% and 0.1%,
respectively, compared with that of the perfect structure.
This oscillatory behavior in the variation of the bond orders
reflects the screening of the vacancy. However, the very
small variation in thes bond order reflects the localized
nature of thes bonding in carbon, which is a strongly cova-
lent material. For thep bonding the bond order between FN
and SN atoms increases by 36% compared with that of the
perfect structure. This increase means that thep electron of
the dangling bond participates in thep bonding between FN
and SN atoms rather than being attracted solely to the core of
the carbon vacancy. If we had assumed that the bond orders
are invariant to the formation of a vacancy, then the vacancy
formation energy would have been overestimated by
1.752 eV. This additional stabilization energy to the forma-
tion of the vacancy is distributed between thes andp bond
energies, as20.799- and 2.551-eV contributions, respec-
tively. Thus, the absolute ratio of thes to p contributions is
about 1 to 3, which is considerably larger than the ratio of
the s and p bonding energy (18.054:0.635) in the perfect
diamond lattice. In thes bond energy the contribution of the
SN-TN and SN-TN8 bonding to this stabilization energy is
comparable to that of the FN-SN bonding. On the other
hand, the stabilization energy for thep bonding comes from
mainly the FN-SN bonding as thep electron in the dangling
bond only participates in thep bonding between the FN and
SN atoms. Finally, the total vacancy formation energy
(9.783 eV) can be separated as the difference of the repul-
sive energy (223.983 eV), the bond energy of the absent
bonds reproduced by the vacancy (37.380 eV), the stabili-

zation of the promotion energy (21.858 eV), and the stabi-
lization of the bond energy (21.752 eV).

Figure 9 shows the errors in the bond orders fors andp
bonds between the FN and SN atoms. We see that the rate of
convergence with respect to the number of recursion levels
of the p bond order is twice as large as that of thes bond
order.

Thus, we have found that the block BOP can separate the
different behavior ofs andp orbitals correctly. In particu-
lar, it can reproduce the different magnitude of reconstruc-
tion for the vacancy and the convergence rate with respect to
the number of the recursion levels. In the scalar moment-
based methods such as the scalar BOP method by Aoki and
the global density of states~GDOS! method, thes and p
orbitals are not separated, since an averaged moment is used
for the two kinds of orbitals.9 This means that the different

FIG. 9. The errors in the bond order fors andp bonds between
the FN and SN atoms, where the 15 recursion level bond orders
Qs50.9161 andQp50.1412 were taken as the exact values.

TABLE III. The bond orders and the bond energies fors andp bonds between the pairs of atoms FN-SN,
SN-TN, and SN-TN8, respectively, in the presense of a vacancy. In the calculations of the bond energiesEs

and Ep , the hopping integrals arehs59.903 eV andhp51.533 eV. DEs and DEp are defined as the
difference with the bond energy between the structure with a vacancy and the perfect structure.DEs1p

representsDEs1DEp .

Total Ideal FN-SN SN-TN SN-TN8 Others

Qs 0.9116 0.9161 0.9058 0.9107
Qp 0.1036 0.1412 0.1034 0.1020
Es~eV/bond! 218.055 218.143 217.941 218.036
Ep~eV/bond! 20.635 20.866 20.634 20.625

Number of bonds 124 124 12 12 24 76
Es~eV! 22237.918 22238.717 2217.718 2215.288 2432.866 21372.046
Ep~eV! 281.291 278.740 210.386 27.605 215.000 248.300
Es1p~eV! 22319.209 22317.457 2228.105 2222.893 2447.866 21420.362
DEs 0.799 21.068 1.362 0.434 0.071
DEp 22.551 22.766 0.015 0.240 20.040
DEs1p 21.752 23.835 1.377 0.674 20.032

DEs

DEs1p(total)
3100(%) 245.6 61.0 277.7 224.8 24.1

DEp

DEs1p(total)
3100(%) 145.6 157.9 20.9 213.7 2.3

DEs1p

DEs1p(total)
3100(%) 100 218.9 278.6 238.5 1.8
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properties of thes andp electrons in the dangling bond are
averaged with respect to the vacancy formation energy and
the convergence rate. As a result a great many moments are
required in order to reproduce the vacancy formation energy
in the usual scalar moment-based method.

V. LARGE-SCALE SIMULATION

The block BOP is applicable to the atomistic simulations
of large systems including thousands of atoms. In this sec-
tion we discuss the parallel computation required to perform
such large-scale atomistic simulations and illustrate the
method with an application to the deformation of a single-
wall carbon nanotube under compression. It is very easy to
give the program code with parallel structure because of the
highly independent nature of the algorithm that evaluates the
energy and force for each atom. We have only to structure
essentially the three main loops in the program code in par-
allel: the block Lanczos transformation, the determination of
the number of electrons on each atom, and the evaluation of
forces. In these loops independent calculations can be per-
formed for each atom, since no information needs to be
passed between the individual atoms. The majority of the
computational effort is occupied by the calculations in these
three loops. Thus, if computation of the three loops are made
parallel, we have almost the ideal parallel code. Figure 10
shows the time to evaluate the energies and forces of a dia-
mond unit cell including 512 atoms as a function of the
number of processors. It is found that the scaleability is al-
most ideal. The parallel computation was done using an au-
tomatic parallel compiler, which is able to perform an auto-
matically restructuring of sequential code. The compiled
code runs in parallel using the shared-memory multiproces-
sor machines. The ideal scaleability brought by the use of the
automatic parallel compiler indicates the simplicity of the
algorithms within block BOP.

We have performed a large-scale atomistic simulation for
the deformation of a single-walled~10,10! nanotube under
compression along the shaft as an application of the block
BOP. The nanotube, which has a length of 140 Å, includes
2280 carbon atoms. The compression along the shaft was

performed by the following geometric optimization with a
constraint. First, thez coordinate of all the atoms in the nano-
tube oriented along thez axis are scaled as the length of shaft
decreases 0.1% of its initial length. Second, the scaled struc-
ture is optimized geometrically with a constraint that thez
coordinate of the atoms within 7 Å of both ends are kept
fixed. By applying repeatedly the optimization to the nano-
tube, the shaft of the nanotube can be compressed statically.
In the early stage of the compression the nanotube shrinks,
maintaining the shape. However, the nanotube buckles peri-
odically when the length of shaft reaches about 80% of the
initial structure. Figure 11 shows a snapshot of the ripple-
buckling nanotube. The mean wavelength of the ripple buck-
ling is 4.8 Å. The appearance of the ripple buckling is very
similar to the behavior observed by transmission electron
microscope~TEM! and atomic force microscope~AFM!
measurements.47,48 A detail of discussion of the deformation
and elastic properties of carbon nanotubes will be presented
elsewhere.

VI. CONCLUSIONS

We have presented the theory of the block BOP based on
the Lanczos basis representation and the block Lanczos al-
gorithm with a single site as the starting state within the
orthogonal tight-binding representation. The efficient O(N)
algorithm provides a general recursion method for evaluating
the bond energy and forces. In the Lanczos basis representa-
tion the off-diagonal block elements of Green’s function ma-
trix can be related to the diagonal block elements through a
simple recurrence relation. As a result the bond orders can be
easily evaluated. From the convergence properties for the
bond energies and forces it is found that the method is ap-
plicable to a wide rage of materials~insulators, semiconduc-
tors, metals, and molecules! with a considerable reduction in
the computational effort compared tok-space methods. The
algorithm becomes more efficient than thek-space calcula-
tion when the number of atoms exceeds about 100. Constant-
energy molecular dynamics simulations for carbon show that
the forces are consistent with the total energy, even if the
method is applied to liquids. Moreover, the use of the block
Lanczos algorithm guarantees that block BOP represents the
different properties of thes andp bonds correctly, so that
the vacancy formation energy of diamond is reproduced cor-
rectly with a small number of moments by a moments-based
method. Finally, block BOP is very easy to set in parallel
code; the parallel computation of the three main loops gives
almost the ideal scaleability. The deformation of carbon
nanotubes under compression was demonstrated as an appli-

FIG. 10. The calculation time to evaluate the energy and the
forces of a 512 atom carbon cell as a function of the number of
processors by the parallel code. The benchmarks were performed on
a Sun Ultra 10000 StarFire which is a parallel computer based on a
shared-memory architecture, using a three-shell cluster, five recur-
sion levels, and a square-root terminator.

FIG. 11. Ripple-buckling single-wall~10,10! nanotube under
compression along the shaft. The snapshot is at 80% of the initial
length (140 Å). The calculation was performed with a five-hop
logically truncated cluster, ten recursion levels, a square-root termi-
nator, total charge neutrality, andkBT50.1 eV. Within the calcu-
lation conditions the error is about 1% in the bond energy for the
initial structure compared with thek-space result.
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cation of the method to large-scale atomistic simulations.
Thus, we conclude that the block BOP is an efficient O(N)
method to perform large-scale atomistic simulations of a
wide variety of materials.
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APPENDIX

We derive a method for evaluating the exact force, which
is consistent with the total energy, at any level of approxi-
mation. In this method the derivatives of the diagonal
Green’s functions can be evaluated indirectly by making use
of the Lanczos basis representation, while the method is
similar to the GDOS method27 as regards the diagonal
Green’s functions are differentiated. The contribution from
the band energy to the force is written using Eqs.~2! and~5!
as follows:

Fk
(band)52

]Eband

]r k
5

2

p
ImE trH ]G~E1 i01!

]r k
J E f~x!dE,

~A1!

The trace of the right side in Eq.~A1! can be divided into the
diagonal block elements for individual atoms:

trH ]G~E1 i01!

]r k
J 5(

i
trH ]Gii ~E1 i01!

]r k
J

5(
i

trH ]G00
L( i )

~E1 i01!

]r k
J , ~A2!

where the indexL ( i ) represents the representation based on
the Lanczos basis with atomi as the starting site. In the
Laczos basis representation the off-diagonal block elements
of the Green’s function matrix are evaluated through the re-
currence relation Eq.~33!, which is derived from the identity
(ZI2H)G(Z)5I . Thus, the following useful relation can be
derived for the derivative of the Green’s function:

]GL( i )
~Z!

]r k
5GL( i )

~Z!
]HL( i )

]r k
GL( i )

~Z!. ~A3!

Taking account of the~0,0! block element of both sides in
Eq. ~A3! we have

trH ]G00
L( i )

~Z!

]r k
J 5(

mn
trH Gn0

L( i )
~Z!G0m

L( i )
~Z!

]Hmn
L( i )

]r k
J .

~A4!

Substituting Eqs.~A2! and~A4! for the trace in Eq.~A1! we
can derive exactly the contribution from the band energy to
the force at any level of approximation as the following very
compact form:

Fk
(band)52(

i
(
mn

trH tnm
L( i )]Hmn

L( i )

]r k
J

52(
i

(
ma,nb

tnb,ma
L( i ) ]Hma,nb

L( i )

]r k
, ~A5!

where

tnm
L( i )

52
2

p
ImE EGn0

L( i )
~E1 i01!G0m

L( i )
~E1 i01! f ~x!dE,

~A6!

where the summation for atomi is taken for all the atoms
that include the atomk in the truncation of system. This
expression for forces has a very similar form to the
Hellmann-Feynman force@see Eq.~9!#. However,t is a new
dimensionless quantity indicating the strength of bonding be-
tween two Lanczos vectors.

A simple example is shown. Consider the force on atom 1
being at the end of a linears-valent trimer along thex axis. It
is assumed that the trimer has two electrons and the hopping
integral between the pairs of atoms 1-2, 2-3, and 1-3 are
2h1 , 2h2, and zero, respectively, where theh1 andh2 are
positive andh2,h1, and also on-site energies for all the
atoms are zero. If the recursion is approximated at the first
levels, then the Green’s functions are given as follows:

G00
L(1)

~Z!5

1

2

Z2h1
1

1

2

Z1h1
, ~A7!

G01
L(1)

~Z!5

1

2

Z2h1
1

2
1

2

Z1h1
, ~A8!

G00
L(2)

~Z!5

1

2

Z2Ah1
21h2

2
1

1

2

Z1Ah1
21h2

2
,

~A9!

G01
L(2)

~Z!5

1

2

Z2Ah1
21h2

2
1

2
1

2

Z1Ah1
21h2

2
,

~A10!

G00
L(3)

~Z!5

1

2

Z2h2
1

1

2

Z1h2
, ~A11!

G01
L(3)

~Z!5

1

2

Z2h2
1

2
1

2

Z1h2
. ~A12!
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The band energy of the trimer can be evaluated from the
residues of the poles, which are occupied, in the diagonal
elements of the Green’s functions, namely,

Eband52h12Ah1
21h2

2. ~A13!

In the force evaluation by Eq.~A5! we have only to calculate

thet01
L(1)

~or t01
L(1)

), andt01
L(2)

~or t10
L(2)

), since the derivatives of
Hamiltonian with respect to the position of atom 1 corre-
sponding to othert ’s are zero. The integrands for theset ’s
are

ZG00
L(1)

~Z!G01
L(1)

~Z!5

1

4

Z2h1
1

2
1

4

Z1h1
1

1

4
h1

~Z2h1!2

1

1

4
h1

~Z1h1!2
, ~A14!
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2
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2
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21h2

2!2
1

1

4
Ah1

21h2
2
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21h2

2!2
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~A15!

From the residues of the poles that are occupied we see that

t01
L(1)

(5t10
L(1)

) andt01
L(2)

(5t01
L(2)

) are21/2 and21/2, respec-
tively. Transforming the derivative of the Hamiltonian by
Eq. ~27! into the the Laczos basis representation we have

]H01
L(1)

]x1
5

]H10
L(1)

]x1
5

]h1

]x1
, ~A16!

]H01
L(2)

]x1
5

]H10
L(2)

]x1
5

h1

Ah1
21h2

2

]h1

]x1
. ~A17!

Thus, we can evaluate the contribution from the band energy
to the force on atom 1 using Eq.~A5!, namely,

Fx1

(band)522t01
L(1) ]H10

L(1)

]x1
22t01

L(2) ]H10
L(2)

]x1

522S 2
1

2D ]h1

]x1
22S 2

1

2D h1

Ah1
21h2

2

]h1

]x1

5
]h1

]x1
1

h1

Ah1
21h2

2

]h1

]x1
. ~A18!

The result is identical to the contribution from the derivative
of Eq. ~A13! with respect to thex coordinate of atom 1. We
see that the force by Eq.~A5! is certainly exact.
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