115 research outputs found

    Theory of nonlinear Landau-Zener tunneling

    Full text link
    A nonlinear Landau-Zener model was proposed recently to describe, among a number of applications, the nonadiabatic transition of a Bose-Einstein condensate between Bloch bands. Numerical analysis revealed a striking phenomenon that tunneling occurs even in the adiabatic limit as the nonlinear parameter CC is above a critical value equal to the gap VV of avoided crossing of the two levels. In this paper, we present analytical results that give quantitative account of the breakdown of adiabaticity by mapping this quantum nonlinear model into a classical Josephson Hamiltonian. In the critical region, we find a power-law scaling of the nonadiabatic transition probability as a function of C/V1C/V-1 and α\alpha , the crossing rate of the energy levels. In the subcritical regime, the transition probability still follows an exponential law but with the exponent changed by the nonlinear effect. For C/V>>1C/V>>1, we find a near unit probability for the transition between the adiabatic levels for all values of the crossing rate.Comment: 9 figure

    1-year impact on medical practice and clinical outcomes of FFRCT the ADVANCE registry

    Get PDF
    OBJECTIVES The 1-year data from the international ADVANCE (Assessing Diagnostic Value of Non-invasive FFRCT in Coronary Care) Registry of patients undergoing coronary computed tomography angiography (CTA) was used to evaluate the relationship of fractional flow reserve derived from coronary CTA (FFRCT) with downstream care and clinical outcomes.BACKGROUND Guidelines for management of chest pain using noninvasive imaging pathways are based on short- to intermediate-term outcomes.METHODS Patients (N = 5,083) evaluated for clinically suspected coronary artery disease and in whom atherosclerosis was identified by coronary CTA were prospectively enrolled at 38 international sites from July 15, 2015, to October 20, 2017. Demographics, symptom status, coronary CTA and FFRCT findings and resultant site-based treatment plans, and clinical outcomes through 1 year were recorded and adjudicated by a blinded core laboratory. Major adverse cardiac events (MACE), death, myocardial infarction (MI), and acute coronary syndrome leading to urgent revascularization were captured.RESULTS At 1 year, 449 patients did not have follow-up data. Revascularization occurred in 1,208 (38.40%) patients with an FFRCT 0.80 (relative risk [RR]: 6.87; 95% confidence interval [CI]: 5.59 to 8.45; p 0.80 (RR: 1.81; 95% CI: 0.96 to 3.43; p = 0.06). Time to first event (all-cause death or MI) occurred in 38 (1.20%) patients with an FFRCT 0.80 (RR: 1.92; 95% CI: 0.96 to 3.85; p = 0.06). Time to first event (cardiovascular death or MI) occurred cardiovascular death or MI occurred more in patients with an FFRCT 0.80 (25 [0.80%] vs. 3 [0.20%]; RR: 4.22; 95% CI: 1.28 to 13.95; p = 0.01).CONCLUSIONS The 1-year outcomes from the ADVANCE FFRCT Registry show low rates of events in all patients, with less revascularization and a trend toward lower MACE and significantly lower cardiovascular death or MI in patients with a negative FFRCT compared with patients with abnormal FFRCT values. (Assessing Diagnostic Value of Non-invasive FFRCT in Coronary Wave [ADVANCE]; NCT02499679) (C) 2020 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.Cardiolog

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
    corecore