63 research outputs found

    Genetic Diversity Enhances Restoration Success by Augmenting Ecosystem Services

    Get PDF
    Disturbance and habitat destruction due to human activities is a pervasive problem in near-shore marine ecosystems, and restoration is often used to mitigate losses. A common metric used to evaluate the success of restoration is the return of ecosystem services. Previous research has shown that biodiversity, including genetic diversity, is positively associated with the provision of ecosystem services. We conducted a restoration experiment using sources, techniques, and sites similar to actual large-scale seagrass restoration projects and demonstrated that a small increase in genetic diversity enhanced ecosystem services (invertebrate habitat, increased primary productivity, and nutrient retention). In our experiment, plots with elevated genetic diversity had plants that survived longer, increased in density more quickly, and provided more ecosystem services (invertebrate habitat, increased primary productivity, and nutrient retention). We used the number of alleles per locus as a measure of genetic diversity, which, unlike clonal diversity used in earlier research, can be applied to any organism. Additionally, unlike previous studies where positive impacts of diversity occurred only after a large disturbance, this study assessed the importance of diversity in response to potential environmental stresses (high temperature, low light) along a water–depth gradient. We found a positive impact of diversity along the entire depth gradient. Taken together, these results suggest that ecosystem restoration will significantly benefit from obtaining sources (transplants or seeds) with high genetic diversity and from restoration techniques that can maintain that genetic diversity

    Atomic spectrometry update – a review of advances in environmental analysis

    Full text link

    Laser ablation inductively coupled plasma mass spectrometry study on fluid inclusions of the Baiyinnuo'er skarn Zn-Pb deposit, North-east China

    No full text
    The Baiylimuo' er Zn-Pb deposit is a typical skarn deposit in NE China. Skarn and orebodies mainly occur between different units of the Lower Permian Huanggangliang Formation carbonates-sandstone-mudstone or within the contact between intrusions and marble. Skarn minerals are dominated by prograde garnet and clinopyroxene, and the main ore minerals are sphalerite and galena. We conducted single fluid inclusion compositional studies using laser ablation inductively coupled plasma mass spectrometry on clinopyroxene (pre-orestage mineral) and sphalerite and calcite (syn-ore-stage minerals). The results show that the Baiylimuo' er fluids are distinctly different from basinal brine but similar to magmatic fluid, thereby indicating that the deposit has a dominantly magmatic origin. This interpretation has also been supported by the O/Br mole ratios, which remain stable (~500) in different fluid stages. The decreases for most of the elements in the fluid inclusions from pre-ore-stage clinopyroxene to syn-ore-stage sphalerite and calcite suggest that mixing with groundwater has occurred during mineralisation, with significant Zn, Pb and Ag deposition

    Zn and Pb mobility during metamorphism of sedimentary rocks and potential implications for some base metal deposits

    No full text
    Comprehension of the genesis of Pb-Zn ore systems is currently limited by a poor understanding of where these metals are sourced from. Our study of metal mobility during regional metamorphism in the Mt. Lofty Ranges, South Australia, demonstrates that in staurolite-absent siliciclastic metasedimentary rocks, biotite contains >80% of the bulk rock Zn, as well as a considerable proportion of the total Pb. Fluid flow through these metasedimentary rocks led to a continuous depletion of Pb and Zn on a mineral and bulk rock scale during prograde regional metamorphism. We calculate that ~80% of the bulk rock Zn and ~50% of the bulk rock Pb were mobilised, mainly through reactions involving biotite. These reactions led to a calculated Pb and Zn "loss" of ~2.7 and 27 Mt, respectively, in the high-grade metamorphic zone. Halogen contents of apatite and biotite and bulk rock Zn isotope data provide evidence that Cl-rich metamorphic fluids were important for metal transport. Hence, fluid flow accompanying prograde metamorphism of typical sedimentary rocks can mobilise base metals to the degree required to potentially supply significant Pb-Zn ore systems

    Sulfur isotope signatures in the lower crust: A SIMS study on S-rich scapolite of granulites

    No full text
    © 2017 Elsevier B.V. Scapolite is an important reservoir for volatiles in the deep crust and provides unique insights into the S isotope signatures at the mantle/crust interface. Here we document the first scapolite reference material (herein referred to as CB1) for in situ S isotope analysis. The chemical and isotopic composition of this euhedral, S-rich scapolite megacryst was characterized via LA-ICP-MS, EPMA, SIMS, and bulk fluorination gas source isotope ratio mass spectrometry. The CB1 scapolite is isotopically homogeneous and our results show that crystal orientation does not affect in situ S isotope SIMS analysis. This makes CB1 an ideal primary calibration standard for in situ analysis of S isotope ratios (36S/32S,34S/32S and33S/32S) in scapolite. With this reference material in hand, we then applied in situ SIMS analysis of S isotopes for the first time on scapolite in granulite samples from the lower crust/upper mantle. The analysed sample suite comprises rocks from classic granulite xenolith locations in southeastern Australia, as well as a sample from the high-grade suture zone of the Dahomeyides in south-eastern Ghana. The results show that scapolites in the lower crust have d34S values between ~- 0.5 and + 4 (‰ VCDT). These values fall within the range of S isotope signatures present in mantle rocks and provide no evidence for the recycling of seawater-derived S into the lower crust. We propose that scapolite formed during granulite facies metamorphism of igneous cumulates, where S was sourced from precursor igneous sulfides. Sulfur isotope heterogeneities between individual scapolite grains in some of the studied samples may reflect non-uniform S-isotope compositions of igneous S-phases, which precipitated from mantle-derived melt
    • …
    corecore