3,195 research outputs found

    Leaf water δ 18/O, δ2H and d-excess isoscapes for Australia using region-specific plant parameters and non-equilibrium vapour

    Get PDF
    Oxygen (δ18O) and hydrogen (δ2H) isotope ratios, and their relationship to one another (d-excess) are altered as water travels from the atmosphere to the land surface, into soils and plants and back to the atmosphere. Plants return water to the atmosphere through transpiration (evaporation through the stomata), which causes isotopic fractionation concentrating the heavier isotopes (18O and 2H) in the water that remains behind in the leaves. The degree of isotopic fractionation during transpiration is controlled largely by climate, and as a result can be predicted using process-based models and climate data. The modelled transpirational isotopic fractionation can be applied to plant source water isotopic values to predict leaf water isotope ratios and generate maps of isotopic composition, or isoscapes. This approach of mechanistic modelling has been well demonstrated in the first generation of global leaf water isoscapes (PLoS One, 3(6), e2447, 2008). However, use of leaf water isoscapes in fields such as hydrology, ecology, and forensics requires a new generation of updated region-specific isoscapes. Here, we generate leaf water isoscapes of δ18O, δ2H and d-excess for Australia, the driest vegetated continent on Earth, where leaf water represents a critical water resource for ecosystems. These isoscapes represent an improvement over previous global isoscapes due to their higher resolution, region-specific, empirically derived plant parameters, and non-equilibrium corrections for water vapour isotopic composition. The new isoscapes for leaf water are evaluated relative to observed isotope ratios of leaf cellulose and cherry juice. The model predictions for annual average leaf water isotope ratios showed strong correlations with these plant tissues that integrate over time. Moreover, inclusion of region-specific leaf temperature estimates and non-equilibirum vapour corrections improved prediction accuracy. Regionally based isoscapes provide improved characterisations of average leaf water isotope ratios needed to support research in hydrology, plant ecophysiology, atmospheric science, ecology, and geographic provenancing of biological materials

    A phase 1, first-in-child, multicenter study to evaluate the safety and efficacy of the oncolytic herpes virus talimogene laherparepvec in pediatric patients with advanced solid tumors

    Get PDF
    BACKGROUND The survival rates for pediatric patients with relapsed and refractory tumors are poor. Successful treatment strategies are currently lacking and there remains an unmet need for novel therapies for these patients. We report here the results of a phase 1 study of talimogene laherparepvec (T-VEC) and explore the safety of this oncolytic immunotherapy for the treatment of pediatric patients with advanced non-central nervous system tumors. METHODS T-VEC was delivered by intralesional injection at 106^{6} plaque-forming units (PFU)/ml on the first day, followed by 108^{8} PFU/ml on the first day of week 4 and every 2 weeks thereafter. The primary objective was to evaluate the safety and tolerability as assessed by the incidence of dose-limiting toxicities (DLTs). Secondary objectives included efficacy indicated by response and survival per modified immune-related response criteria simulating the Response Evaluation Criteria in Solid Tumors (irRC-RECIST). RESULTS Fifteen patients were enrolled into two cohorts based on age: cohort A1 (n = 13) 12 to ≤21 years old (soft-tissue sarcoma, n = 7; bone sarcoma, n = 3; neuroblastoma, n = 1; nasopharyngeal carcinoma, n = 1; and melanoma, n = 1) and cohort B1 (n = 2) 2 to <12 years old (melanoma, n = 2). Overall, patients received treatment for a median (range) of 5.1 (0.1, 39.4) weeks. No DLTs were observed during the evaluation period. All patients experienced at least one treatment-emergent adverse event (TEAE), and 53.3% of patients reported grade ≥3 TEAEs. Overall, 86.7% of patients reported treatment-related TEAEs. No complete or partial responses were observed, and three patients (20%) overall exhibited stable disease as the best response. CONCLUSIONS T-VEC was tolerable as assessed by the observation of no DLTs. The safety data were consistent with the patients' underlying cancer and the known safety profile of T-VEC from studies in the adult population. No objective responses were observed. TRIAL REGISTRATION ClinicalTrials.gov: NCT02756845. https://clinicaltrials.gov/ct2/show/NCT02756845

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Genes Associated with 2-Methylisoborneol Biosynthesis in Cyanobacteria: Isolation, Characterization, and Expression in Response to Light

    Get PDF
    The volatile microbial metabolite 2-methylisoborneol (2-MIB) is a root cause of taste and odor issues in freshwater. Although current evidence suggests that 2-MIB is not toxic, this compound degrades water quality and presents problems for water treatment. To address these issues, cyanobacteria and actinomycetes, the major producers of 2-MIB, have been investigated extensively. In this study, two 2-MIB producing strains, coded as Pseudanabaena sp. and Planktothricoids raciborskii, were used in order to elucidate the genetic background, light regulation, and biochemical mechanisms of 2-MIB biosynthesis in cyanobacteria. Genome walking and PCR methods revealed that two adjacent genes, SAM-dependent methyltransferanse gene and monoterpene cyclase gene, are responsible for GPP methylation and subsequent cyclization to 2-MIB in cyanobacteria. These two genes are located in between two homologous cyclic nucleotide-binding protein genes that may be members of the Crp-Fnr regulator family. Together, this sequence of genes forms a putative operon. The synthesis of 2-MIB is similar in cyanobacteria and actinomycetes. Comparison of the gene arrangement and functional sites between cyanobacteria and other organisms revealed that gene recombination and gene transfer probably occurred during the evolution of 2-MIB-associated genes. All the microorganisms examined have a common origin of 2-MIB biosynthesis capacity, but cyanobacteria represent a unique evolutionary lineage. Gene expression analysis suggested that light is a crucial, but not the only, active regulatory factor for the transcription of 2-MIB synthesis genes. This light-regulated process is immediate and transient. This study is the first to identify the genetic background and evolution of 2-MIB biosynthesis in cyanobacteria, thus enhancing current knowledge on 2-MIB contamination of freshwater

    A systematic review of the use of dosage form manipulation to obtain required doses to inform use of manipulation in paediatric practice

    Get PDF
    This study sought to determine whether there is an evidence base for drug manipulation to obtain the required dose, a common feature of paediatric clinical practice. A systematic review of the data sources, PubMed, EMBASE, CINAHL, IPA and the Cochrane database of systematic reviews, was used. Studies that considered the dose accuracy of manipulated medicines of any dosage form, evidence of safety or harm, bioavailability, patient experience, tolerability, contamination and comparison of methods of manipulation were included. Case studies and letters were excluded. Fifty studies were eligible for inclusion, 49 of which involved tablets being cut, split, crushed or dispersed. The remaining one study involved the manipulation of suppositories of one drug. No eligible studies concerning manipulation of oral capsules or liquids, rectal enemas, nebuliser solutions, injections or transdermal patches were identified. Twenty four of the tablet studies considered dose accuracy using weight and/or drug content. In studies that considered weight using adapted pharmacopoeial specifications, the percentage of halved tablets meeting these specifications ranged from 30% to 100%. Eighteen studies investigated bioavailability, pharmacokinetics or clinical outcomes following manipulations which included nine delayed or modified release formulations. In each of these nine studies the entirety of the dosage form was administered. Only one of the 18 studies was identified where drugs were manipulated to obtain a proportion of the dosage form, and that proportion administered. The five studies that considered patient perception found that having to manipulate the tablets did not have a negative impact on adherence. Of the 49 studies only two studies reported investigating children. This review yielded limited evidence to support manipulation of medicines for children. The results cannot be extrapolated between dosage forms, methods of manipulation or between different brands of the same drug

    Inhibitor of DNA Binding 3 Limits Development of Murine Slam-Associated Adaptor Protein-Dependent “Innate” γδ T cells

    Get PDF
    Id3 is a dominant antagonist of E protein transcription factor activity that is induced by signals emanating from the alphabeta and gammadelta T cell receptor (TCR). Mice lacking Id3 were previously shown to have subtle defects in positive and negative selection of TCRalphabeta+ T lymphocytes. More recently, Id3(-/-) mice on a C57BL/6 background were shown to have a dramatic expansion of gammadelta T cells.Here we report that mice lacking Id3 have reduced thymocyte numbers but increased production of gammadelta T cells that express a Vgamma1.1+Vdelta6.3+ receptor with restricted junctional diversity. These Vgamma1.1+Vdelta6.3+ T cells have multiple characteristics associated with "innate" lymphocytes such as natural killer T (NKT) cells including an activated phenotype, expression of the transcription factor PLZF, and rapid production of IFNg and interleukin-4. Moreover, like other "innate" lymphocyte populations, development of Id3(-/-) Vgamma1.1+Vdelta6.3+ T cells requires the signaling adapter protein SAP.Our data provide novel insight into the requirements for development of Vgamma1.1+Vdelta6.3+ T cells and indicate a role for Id3 in repressing the response of "innate" gammadelta T cells to SAP-mediated expansion or survival

    The regulation of IL-10 expression

    Get PDF
    Interleukin (IL)-10 is an important immunoregulatory cytokine and an understanding of how IL-10 expression is controlled is critical in the design of immune intervention strategies. IL-10 is produced by almost all cell types within the innate (including macrophages, monocytes, dendritic cells (DCs), mast cells, neutrophils, eosinophils and natural killer cells) and adaptive (including CD4(+) T cells, CD8(+) T cells and B cells) immune systems. The mechanisms of IL-10 regulation operate at several stages including chromatin remodelling at the Il10 locus, transcriptional regulation of Il10 expression and post-transcriptional regulation of Il10 mRNA. In addition, whereas some aspects of Il10 gene regulation are conserved between different immune cell types, several are cell type- or stimulus-specific. Here, we outline the complexity of IL-10 production by discussing what is known about its regulation in macrophages, monocytes, DCs and CD4(+) T helper cells

    Search for narrow resonances in dilepton mass spectra in proton-proton collisions at root s=13 TeV and combination with 8 TeV data

    Get PDF
    Peer reviewe

    Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions and Its Implication for the Search for the Chiral Magnetic Effect

    Get PDF
    Peer reviewe

    Search for new physics with dijet angular distributions in proton-proton collisions at root S = 13 TeV

    Get PDF
    Peer reviewe
    corecore