1,562 research outputs found

    Nernst branes from special geometry

    Get PDF
    We construct new black brane solutions in U(1)U(1) gauged N=2{\cal N}=2 supergravity with a general cubic prepotential, which have entropy density sT1/3s\sim T^{1/3} as T0T \rightarrow 0 and thus satisfy the Nernst Law. By using the real formulation of special geometry, we are able to obtain analytical solutions in closed form as functions of two parameters, the temperature TT and the chemical potential μ\mu. Our solutions interpolate between hyperscaling violating Lifshitz geometries with (z,θ)=(0,2)(z,\theta)=(0,2) at the horizon and (z,θ)=(1,1)(z,\theta)=(1,-1) at infinity. In the zero temperature limit, where the entropy density goes to zero, we recover the extremal Nernst branes of Barisch et al, and the parameters of the near horizon geometry change to (z,θ)=(3,1)(z,\theta)=(3,1).Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in Section 3. No changes to conclusions. References adde

    Black holes in supergravity and integrability

    Get PDF
    Stationary black holes of massless supergravity theories are described by certain geodesic curves on the target space that is obtained after dimensional reduction over time. When the target space is a symmetric coset space we make use of the group-theoretical structure to prove that the second order geodesic equations are integrable in the sense of Liouville, by explicitly constructing the correct amount of Hamiltonians in involution. This implies that the Hamilton-Jacobi formalism can be applied, which proves that all such black hole solutions, including non-extremal solutions, possess a description in terms of a (fake) superpotential. Furthermore, we improve the existing integration method by the construction of a Lax integration algorithm that integrates the second order equations in one step instead of the usual two step procedure. We illustrate this technology with a specific example.Comment: 44 pages, small typos correcte

    Nernst branes in gauged supergravity

    Full text link
    We study static black brane solutions in the context of N = 2 U(1) gauged supergravity in four dimensions. Using the formalism of first-order flow equations, we construct novel extremal black brane solutions including examples of Nernst branes, i.e. extremal black brane solutions with vanishing entropy density. We also discuss a class of non-extremal generalizations which is captured by the first-order formalism.Comment: 44 pages, 3 figures, v2: added appendix B and references, minor typographic changes, v3: added some clarifying remarks, version published in JHE

    New supersymmetric higher-derivative couplings: Full N=2 superspace does not count!

    Get PDF
    An extended class of N=2 locally supersymmetric invariants with higher-derivative couplings based on full superspace integrals, is constructed. These invariants may depend on unrestricted chiral supermultiplets, on vector supermultiplets and on the Weyl supermultiplet. Supersymmetry is realized off-shell. A non-renormalization theorem is proven according to which none of these invariants can contribute to the entropy and electric charges of BPS black holes. Some of these invariants may be relevant for topological string deformations.Comment: 24 pages, v2: version published in JHEP, one reference added and typos corrected, v3: reference adde

    A Twist in the Dyon Partition Function

    Get PDF
    In four dimensional string theories with N=4 and N=8 supersymmetries one can often define twisted index in a subspace of the moduli space which captures additional information on the partition function than the ones contained in the usual helicity trace index. We compute several such indices in type IIB string theory on K3 x T^2 and T^6, and find that they share many properties with the usual helicity trace index that captures the spectrum of quarter BPS states in N=4 supersymmetric string theories. In particular the partition function is a modular form of a subgroup of Sp(2,Z) and the jumps across the walls of marginal stability are controlled by the residues at the poles of the partition function. However for large charges the logarithm of this index grows as 1/n times the entropy of a black hole carrying the same charges where n is the order of the symmetry generator that is used to define the twisted index. We provide a macroscopic explanation of this phenomenon using quantum entropy function formalism. The leading saddle point corresponding to the attractor geometry fails to contribute to the twisted index, but a Z_n orbifold of the attractor geometry produces the desired contribution.Comment: LaTeX file, 35 pages; v2: references adde

    Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.

    Get PDF
    BACKGROUND: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. METHODS: Systematic review with meta-analysis of efficacy within 1-4 weeks and at follow up at 1-12 weeks after the end of treatment. RESULTS: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. CONCLUSION: TENS, EA and LLLT administered with optimal doses in an intensive 2-4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK

    Stationary Black Holes: Uniqueness and Beyond

    Get PDF
    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998. Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's authorship. Significantly restructured and updated all sections; changes are too numerous to be usefully described here. The number of references increased from 186 to 32

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore