1,562 research outputs found
Nernst branes from special geometry
We construct new black brane solutions in gauged
supergravity with a general cubic prepotential, which have entropy density
as and thus satisfy the Nernst Law. By using
the real formulation of special geometry, we are able to obtain analytical
solutions in closed form as functions of two parameters, the temperature
and the chemical potential . Our solutions interpolate between
hyperscaling violating Lifshitz geometries with at the
horizon and at infinity. In the zero temperature limit,
where the entropy density goes to zero, we recover the extremal Nernst branes
of Barisch et al, and the parameters of the near horizon geometry change to
.Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in
Section 3. No changes to conclusions. References adde
Black holes in supergravity and integrability
Stationary black holes of massless supergravity theories are described by
certain geodesic curves on the target space that is obtained after dimensional
reduction over time. When the target space is a symmetric coset space we make
use of the group-theoretical structure to prove that the second order geodesic
equations are integrable in the sense of Liouville, by explicitly constructing
the correct amount of Hamiltonians in involution. This implies that the
Hamilton-Jacobi formalism can be applied, which proves that all such black hole
solutions, including non-extremal solutions, possess a description in terms of
a (fake) superpotential. Furthermore, we improve the existing integration
method by the construction of a Lax integration algorithm that integrates the
second order equations in one step instead of the usual two step procedure. We
illustrate this technology with a specific example.Comment: 44 pages, small typos correcte
Nernst branes in gauged supergravity
We study static black brane solutions in the context of N = 2 U(1) gauged
supergravity in four dimensions. Using the formalism of first-order flow
equations, we construct novel extremal black brane solutions including examples
of Nernst branes, i.e. extremal black brane solutions with vanishing entropy
density. We also discuss a class of non-extremal generalizations which is
captured by the first-order formalism.Comment: 44 pages, 3 figures, v2: added appendix B and references, minor
typographic changes, v3: added some clarifying remarks, version published in
JHE
New supersymmetric higher-derivative couplings: Full N=2 superspace does not count!
An extended class of N=2 locally supersymmetric invariants with
higher-derivative couplings based on full superspace integrals, is constructed.
These invariants may depend on unrestricted chiral supermultiplets, on vector
supermultiplets and on the Weyl supermultiplet. Supersymmetry is realized
off-shell. A non-renormalization theorem is proven according to which none of
these invariants can contribute to the entropy and electric charges of BPS
black holes. Some of these invariants may be relevant for topological string
deformations.Comment: 24 pages, v2: version published in JHEP, one reference added and
typos corrected, v3: reference adde
A Twist in the Dyon Partition Function
In four dimensional string theories with N=4 and N=8 supersymmetries one can
often define twisted index in a subspace of the moduli space which captures
additional information on the partition function than the ones contained in the
usual helicity trace index. We compute several such indices in type IIB string
theory on K3 x T^2 and T^6, and find that they share many properties with the
usual helicity trace index that captures the spectrum of quarter BPS states in
N=4 supersymmetric string theories. In particular the partition function is a
modular form of a subgroup of Sp(2,Z) and the jumps across the walls of
marginal stability are controlled by the residues at the poles of the partition
function. However for large charges the logarithm of this index grows as 1/n
times the entropy of a black hole carrying the same charges where n is the
order of the symmetry generator that is used to define the twisted index. We
provide a macroscopic explanation of this phenomenon using quantum entropy
function formalism. The leading saddle point corresponding to the attractor
geometry fails to contribute to the twisted index, but a Z_n orbifold of the
attractor geometry produces the desired contribution.Comment: LaTeX file, 35 pages; v2: references adde
Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials.
BACKGROUND: Treatment efficacy of physical agents in osteoarthritis of the knee (OAK) pain has been largely unknown, and this systematic review was aimed at assessing their short-term efficacies for pain relief. METHODS: Systematic review with meta-analysis of efficacy within 1-4 weeks and at follow up at 1-12 weeks after the end of treatment. RESULTS: 36 randomised placebo-controlled trials (RCTs) were identified with 2434 patients where 1391 patients received active treatment. 33 trials satisfied three or more out of five methodological criteria (Jadad scale). The patient sample had a mean age of 65.1 years and mean baseline pain of 62.9 mm on a 100 mm visual analogue scale (VAS). Within 4 weeks of the commencement of treatment manual acupuncture, static magnets and ultrasound therapies did not offer statistically significant short-term pain relief over placebo. Pulsed electromagnetic fields offered a small reduction in pain of 6.9 mm [95% CI: 2.2 to 11.6] (n = 487). Transcutaneous electrical nerve stimulation (TENS, including interferential currents), electro-acupuncture (EA) and low level laser therapy (LLLT) offered clinically relevant pain relieving effects of 18.8 mm [95% CI: 9.6 to 28.1] (n = 414), 21.9 mm [95% CI: 17.3 to 26.5] (n = 73) and 17.7 mm [95% CI: 8.1 to 27.3] (n = 343) on VAS respectively versus placebo control. In a subgroup analysis of trials with assumed optimal doses, short-term efficacy increased to 22.2 mm [95% CI: 18.1 to 26.3] for TENS, and 24.2 mm [95% CI: 17.3 to 31.3] for LLLT on VAS. Follow-up data up to 12 weeks were sparse, but positive effects seemed to persist for at least 4 weeks after the course of LLLT, EA and TENS treatment was stopped. CONCLUSION: TENS, EA and LLLT administered with optimal doses in an intensive 2-4 week treatment regimen, seem to offer clinically relevant short-term pain relief for OAK
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
authorship. Significantly restructured and updated all sections; changes are
too numerous to be usefully described here. The number of references
increased from 186 to 32
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
- …
