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1 Introduction and summary

We now have a good understanding of the spectrum of dyons in N = 4 and N = 8 su-

persymmetric string theories [1–33]. For large charges the result for the degeneracy agrees

with the macroscopic entropy of a black hole carrying the same charges. We also have a

good understanding of how to systematically compute higher derivative corrections [34–

38] and quantum corrections [39–42] to the black hole entropy. Some of these corrections

have already been used to test the correspondence between the microscopic and black hole

entropies beyond the leading order. Eventually one hopes to be able to systematically

compute the corrections to the black hole entropy using these techniques, and compare the

results with the microscopic answer, thereby testing the correspondence between macro-

scopic and microscopic entropies to much finer detail. Some attempt to generalize these

results to half BPS black holes in the N = 2 supersymmetric STU model has also been

made in [43, 44].

On the microscopic side one often computes an index rather than the absolute degen-

eracy, defined so that it receives contribution only from the BPS states in the spectrum.

As a result these indices are protected and do not vary continuously as we vary the moduli

of the theory. In four dimensions the standard index is the helicity trace index B2n defined

as follows [45, 46]

B2n =
1

(2n)!
Tr
[
(−1)2h(2h)2n

]
, (1.1)

– 1 –



J
H
E
P
0
5
(
2
0
1
0
)
0
2
8

where h is the third component of the angular momentum of a state in the rest frame, and

the trace is taken over all states carrying a given set of charges. In order that a given state

gives a non-vanishing contribution to this index, the number of supersymmetries broken

by the state must be less than or equal to 4n. This is due to the fact that for every pair

of broken supersymmetries we have a pair of fermion zero modes whose quantization gives

a bose-fermi degenerate pair of states. As a result Tr(−1)2h will vanish unless we insert

a factor of 2h which prevents the cancelation between these pair of states, thereby effec-

tively soaking up the pair of fermion zero modes. Thus if we have more than 4n broken

supersymmetries, and hence more that 4n fermion zero modes, then B2n does not contain

enough insertions of 2h to soak up all the fermion zero modes, and the contribution to

the trace from such states vanishes. On the other hand if we have states with precisely

4n broken supersymmetries then B2n receives contribution from these states, but not from

any other states with more than 4n broken supersymmetries. This makes B2n the ideal in-

dex for capturing protected information on states with 4n broken supersymmetries. Some

standard examples are B2 for half BPS states in N = 2 supersymmetric theories, B4 for

half BPS states in N = 4 supersymmetric theories, B6 for quarter BPS states in N = 4

supersymmetric theories, B14 for 1/8 BPS states in N = 8 supersymmetric theories etc.

The normalization in the definition of B2n has been adjusted so that the contribution to

the trace from the 4n fermion zero modes due to broken supersymmetries exactly cancels

the denominator factor of (2n)! except for a sign given by (−1)n.

Given that on the macroscopic side the black hole entropy always gives the absolute

degeneracy whereas on the microscopic side we compute the helicity trace index, one might

wonder whether comparing the two is justified. A resolution of this issue was proposed

in [42] where it was shown how using the expression for the degeneracy on the macro-

scopic side one can compute the helicity trace index. This can then be compared with the

microscopic results. This argument will be reviewed in section 6.

In this paper we shall study a modified index obtained by twisting the helicity trace

index by an appropriate discrete symmetry transformation — both on the microscopic and

the macroscopic side — and compare the results. For this we need to restrict the moduli

to be on special subspaces of the moduli space where the theory admits extra discrete

symmetries generated by an element g, and restrict the charges carried by the dyon to be

such that they are invariant under g. In this case we can define a new twisted index as1

Bg
2n ≡

1

(2n)!
Tr
[
g (−1)2h(2h)2n

]
. (1.2)

If all the supersymmetry generators of the theory are invariant under g then our earlier

counting holds and we conclude that Bg
2n does not receive any contribution from states

which breaks more than 4n supercharges. However suppose that some of the broken super-

symmetry generators are not invariant under g. In that case the corresponding fermion zero

modes are also not invariant under g, and the contribution from these modes in Tr(−1)2hg

will not vanish. As a result we do not need any factor of 2h to soak up this pair of fermion

1Black holes carrying discrete gauge charges have been discussed earlier in [47, 48].
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zero modes. If on the other hand we have a pair of fermion zero modes which are invari-

ant under g then we need a factor of 2h in the trace to soak up these zero modes. Thus

Bg
2n receives non-vanishing contribution from states which break less than or equal to 4n

g-invariant supersymmetries, — the total number of broken supersymmetries can be more

than 4n. Conversely, if we have a state that breaks certain number of supersymmetres,

and if 4n of these broken supersymmetries are invariant under g, then the ideal g-twisted

index for capturing information about the spectrum of these states is Bg
2n. Since we expect

Bg
2n to have properties similar to that for B2n (e.g. for wall crossing [49–54]), this allows

us to introduce an index in extended supersymmetric theories which behaves as an index

in a theory with less number of supersymmetries.2

The main goal of this paper will be to compute such twisted indices in type II string

theory compactified on M× T 2 where M can be either T 4 or K3. We choose g to be the

generator of a geometric ZN symmetry acting on M preserving 16 supersymmetries. For

type II string theory on T 4×T 2 this requires g to commute with 16 out of the 32 unbroken

supersymmetries, while for type IIB string theory on K3×T 2 this will require g to commute

with all the 16 unbroken supersymmetries. Examples of such ZN transformations have been

discussed in [59, 60], and the dyon spectrum on orbifolds of the original theory by these

symmetries (accompanied by a translation along a circle) have been analyzed in [9–11].

These (without the translations along the circle) will be the ZN transformations we shall

be using in our analysis. However here we do not take the orbifold of the original theory;

we simply use g for defining a twisted partition function in the original theory. In this

theory we consider dyonic states preserving 4 supersymmetries all of which are g invariant.

Such a dyon breaks 12 of the 16 g-invariant supersymmetries, and the relevant g-twisted

index is Bg
6 . We find explicit expression for this index in the examples described above, and

find that the index has properties similar to B6 in N = 4 supersymmetric string theories,

— the helicity trace index used for encoding information on 1/4 BPS states in this theory.

In particular:

1. The index is given by the Fourier transform of the inverse of a modular form of a

subgroup of Sp(2,Z).

2. The value of the index in different domains separated by the walls of marginal sta-

bility is controlled by the same partition function — with the information on the

domain being encoded in the choice of contour along which the Fourier integral is to

be performed.

3. The jumps across the walls of marginal stability are controlled by the residues at

certain poles of the partition function. The resulting expression for the jump follows

the same wall crossing formula as the usual B6 index.

2The use of such indices is not new. In particular such an index has been analyzed in detail in N = 4

supersymmetric gauge theories where it was found that supersymmetric multi-monopole solutions preserving

quarter of the supersymmetries exist only on a subspace of the moduli space [55–58]. As a result these do

not contribute to the usual helicity trace index B6 which should have the same value everywhere in the

moduli space (leaving aside possible jumps across walls of marginal stability). Nevertheless one can define

appropriate index to capture information about the multi-monopole states in the particular subspace of the

moduli space where the solution exists.
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4. The growth of the index for large charges is controlled by another set of poles of the

partition function.

There is however an important difference. If we associate an ‘entropy’ to this index defined

by taking its logarithm, we find that for large charges the entropy is given by

SBH/N , (1.3)

where SBH is the entropy of a black hole carrying the same set of charges as the dyon and

N is the order of g.

Given this result for the index it is natural to ask if this can be explained from the

macroscopic viewpoint. We show that it is indeed possible to provide an explanation using

the quantum entropy function formalism [41, 42], – a proposal for calculating systematic

quantum corrections to the black hole entropy as a path integral of string theory over the

near horizon geometry of the black hole. We find that when we follow the same prescrip-

tion to compute the twisted index Bg
6 , the path integral must be carried out over field

configurations satisfying g-twisted boundary condition along the boundary circle of the

AdS2 factor of the near horizon geometry. Since the circle is contractible in the interior of

AdS2, this is not an allowed boundary condition on the fields in the attractor geometry.

As a result the saddle point corresponding to the attractor geometry does not contribute

to the path integral. However a ZN orbifold of the attractor geometry, which has the same

asymptotics as the attractor geometry, does contribute and gives a contribution to the path

integral whose semiclassical value is exp(SBH/N). This provides a natural explanation for

the microscopic result (1.3).

The rest of the paper is organised as follows. In section 2 we consider the simple exam-

ple of type II string theory on K3×T 2 and compute the index Bg
6 for a Z2 transformation

g that acts geometrically on K3 and commutes with all the symmetries. The result is

expressed as a triple Fourier integral of a ‘partition function’. In section 3 we study various

properties of this partition function by relating it to a threshold integral [7, 8, 61–63]. In

particular we show that it transforms as a modular form under a subgroup of Sp(2,Z). We

also determine the location of its zeroes and poles. In section 4 we use these properties

to derive properties of the index. In particular we prove the S-duality invariance of the

index and show that the jump in this index across a wall of marginal stability is controlled

by the residues at the poles of the partition function. We also determine the behaviour

of the index for large charges, and find that the ‘entropy’, defined as the logarithm of the

index, is half of the entropy of a black hole carrying the same charges. In section 5 we

generalize these results to type IIB string theory on M× T 2 where M = K3 or T 4, with

g chosen as a ZN transformation in M which preserves 16 of the supersymmetries of the

theory. In this case the ‘entropy’ associated with the index grows as 1/N times the entropy

of the black hole. In section 6 we provide a macroscopic explanation of this phenomenon

using quantum entropy function formalism. We end in section 7 by discussing some other

possible applications of this twisted index.
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2 Computation of a Z2 twisted index in type II string theory on K3×T
2

In this section we shall consider the spectrum of 1/8 BPS dyons in type IIB string theory

on K3 × T 2, identify g as a specific geometric Z2 symmetry of K3 used in [6, 9, 18] that

preserves the covariantly constant spinors of K3 and leaves invariant 14 of the 22 2-cycles

of K3, and calculate the index Bg
6 for these dyons. This of course forces the moduli of K3

to lie in a subspace of the full moduli space admitting this symmetry. We shall denote the

a and b cycles of T 2 by S1 and S̃1, and focus on a specific class of dyons consisting of one

D5-brane wrapped along K3×S1, (Q1 + 1) D1-branes wrapped along S1 and one Kaluza-

Klein (KK) monopole associated with the circle S̃1, carrying −n units of momentum along

S1 and J units of momentum along S̃1.3 A duality map involving an S-duality of the ten

dimensional type IIB string theory, followed by a T-duality along S̃1 and finally a string

string duality transformation that relates type IIA string theory on K3 to heterotic string

theory of T 4, brings this state to a specific state in heterotic string theory. Under this

duality map the charges Q1, J and the single D5-brane wrapping along K3 × S1 become

components of the magnetic charge P , the charges n and the single KK-monopole charge

associated with S̃1 become components of the electric charge Q, and the transformation

g gets mapped to a specific symmetry of the heterotic string theory that exchanges the

two E8 factors of the gauge group. Thus it acts only on the left-moving modes of the

world-sheet and preserves all the supersymmetries. The duality group of the theory is

SO(6, 22; Z)T ×SL(2,Z)S where the subscripts T and S denote that in this heterotic frame

they appear as T- and S-duality symmetries respectively. If we denote by Q2, P 2 and Q ·P

the SO(6, 22) invariant bilinears in the charges then for this particular charge vector Q2,

P 2 and Q · P are given by the relations [9, 18]

Q2 = 2n, P 2 = 2Q1, Q · P = J . (2.1)

We define the partition function Z(ρ, σ, v) via the relation:

Z(ρ, σ, v) =
∑

n,Q1,J

Bg
6(n,Q1, J) (−1)Je2πiQ1σ+2πinρ+2πiJv , (2.2)

where Bg
6(n,Q1, J) is the contribution to Bg

6 from states carrying quantum numbers

(n,Q1, J). Inverting this relation we get

−Bg
6(n,Q1, J) = (−1)J+1

∫ 1

0
dρ

∫ 1

0
dσ

∫ 1

0
dv e−2πiQ1σ−2πinρ−2πiJv Z(ρ, σ, v) . (2.3)

The computation of the Z(ρ, σ, v) proceeds as in [9] where the B6 index of dyons was

calculated in type IIB string theory on K3× T 2, modded out by a Z2 transformation that

involved the same symmetry g accompanied by half unit of translation along S1. We shall

follow the notations of [18] where these results were reviewed. The main difference between

our analysis and the one given in [9] will be that 1) here we do not remove any mode since

3The analysis can be generalized to the case of multiple (Q5) D5-branes following [9]. In any case the

final result depends only on the combination Q5(Q1 − Q5).
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we are not considering an orbifold, and 2) instead of correlating the momentum along S1

with the g quantum number as in [9], here we use the g quantum number of a mode as

the weight of its contribution to the index. However as far as the counting of the modes

and their bahaviour under g transformation are concerned, we can directly use the results

of [9]. As in the case of [9] we shall express Z as a product of several independent pieces:

1. Partition function for the excitation modes of the KK monopole.

2. Partition function for the D1-D5 center of mass motion in the KK monopole back-

ground. This can be further divided into the contribution from the zero modes and

the contribution from the non-zero modes.

3. Partition function associated with the motion of the D1-branes relative to the

D5-brane.

The world volume degrees of freedom of the three component systems listed above, and

the quantum numbers carried by them, including their transformation properties under

g, can be found in [9, 18]. As in [9, 18], we shall work in the convention where the

four g-invariant unbroken supersymmetries of the system act on the right-moving modes,

ı.e. modes carrying positive momentum along S1. In this convention the requirement of

unbroken supersymmetry forces all the right-moving modes into their ground states.

In the process of computing the index we must make sure that all the g-invariant

fermion zero modes are absorbed by the factors of 2h inserted into the trace. Since

in the present example g commutes with all the supersymmetries of the theory, all the

fermion zero modes associated with the broken supersymmetries will be g even. In

particular the KK monopole world-volume breaks 8 of the 16 supersymmetries, producing

8 fermion zero modes. These eight g-even fermion zero modes are soaked up by 4 factors

of 2h in Bg
6 . The D1-D5 system in the KK monopole background breaks four more

supersymmetries. This exhausts all the fermion zero modes associated with broken

supersymmetry generators as long as we consider only BPS excitations, ı.e. excitations

carrying negative momentum along S1.

We begin by computing the contribution to the partition function from the KK

monopole. It follows from the results reviewed in [18] that the world-volume of the KK

monopole has 16 left-moving bosonic oscillators even under g and 8 left-moving bosonic

oscillators odd under g. None of these excitations carry any D1-brane charge or momentum

along S̃1. Furthermore the ground state of the Kaluza-Klein monopole carries −1 unit of

left-moving momentum, ı.e. one unit of momenum along S1. Thus the net contribution to

the partition function from these modes is given by

ZKK = e−2πiρ
∞∏

n=1

(
1 − e2πinρ

)−16
∞∏

n=1

(
1 + e2πinρ

)−8
. (2.4)

There are also eight right-moving fermion zero modes which are absorbed by four factors

of 2h inserted into the trace.

Next we turn to the contribution from the D1-D5 center of mass motion in the back-

ground of the KK monopole. Again the various modes and their quantum numbers can be

– 6 –
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read out from the results reviewed in [18]. In particular all of these modes are g-invariant.

There are four fermion zero modes associated with broken supersymmetry; they are ab-

sorbed by two factors of 2h inserted into the helicity trace. The dynamics of the rest of

the zero modes is described by an interacting supersymmetric quantum mechanics with

Taub-NUT target space, and using the results of [64, 65] one finds that the corresponding

contribution to the partition function is given by −e−2πiv/(1− e−2πiv)2 [18]. On the other

hand the non-zero mode oscillators consist of four g-invariant left-moving bosonic modes

carrying ±1 units of momentum along S̃1, and four g-invariant left-moving fermionic modes

carrying no momentum along S̃1.4 Thus the net contribution to the partition function from

the zero modes and the non-zero mode oscillators associated with the D1-D5-brane center

of mass motion is given by

Zcm = −e−2πiv (1 − e−2πiv)−2
∞∏

n=1

{
(1 − e2πinρ)4 (1 − e2πinρ+2πiv)−2 (1 − e2πinρ−2πiv)−2

}
.

(2.5)

Finally we turn to the contribution from the motion of the D1-branes relative to the

D5-brane. For this we first need to introduce some auxiliary quantities. The low energy

dynamics of a single D1-brane inside the D5-brane, wound once along S1, is described by

a superconformal field theory with target space K3. We define [18]

F (r,s)(τ, z) ≡
1

2
TrRR;gr

(
gs(−1)JL+JRe2πiτL0e−2πiτ̄ L̄0e2πiJLz

)
, r, s = 0, 1 , (2.6)

where Tr denotes trace over all the gr twisted Ramond-Ramond (RR) sector states in

this CFT, and JL/2 and JR/2 denote the generators of the U(1)L × U(1)R subgroup of

the SU(2)L × SU(2)R R-symmetry group of this conformal field theory. In our convention

the current associated with JL is holomorphic and the one associated with JR is anti-

holomorphic. Explicit computation gives [7]

F (0,0)(τ, z) = 4

[
ϑ2(τ, z)

2

ϑ2(τ, 0)2
+
ϑ3(τ, z)

2

ϑ3(τ, 0)2
+
ϑ4(τ, z)

2

ϑ4(τ, 0)2

]
,

F (0,1)(τ, z) = 4
ϑ2(τ, z)

2

ϑ2(τ, 0)2
, F (1,0)(τ, z) = 4

ϑ4(τ, z)
2

ϑ4(τ, 0)2
, F (1,1)(τ, z) = 4

ϑ3(τ, z)
2

ϑ3(τ, 0)2
, (2.7)

where ϑi are the Jacobi theta functions. (2.7) can be rewritten as

F (r,s)(τ, z) = h
(r,s)
0 (τ)ϑ3(2τ, 2z) + h

(r,s)
1 (τ)ϑ2(2τ, 2z) (2.8)

where

h
(0,0)
0 (τ) = 8

ϑ3(2τ, 0)
3

ϑ3(τ, 0)2ϑ4(τ, 0)2
+ 2

1

ϑ3(2τ, 0)

h
(0,0)
1 (τ) = −8

ϑ2(2τ, 0)
3

ϑ3(τ, 0)2ϑ4(τ, 0)2
+ 2

1

ϑ2(2τ, 0)

4At the center of the KK monople the quantum number labeling eS1 momentum can be identified as the

U(1)L generator of the SU(2)R × SU(2)L rotation group in the tangent space of the KK monopole.
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h
(0,1)
0 (τ) = 2

1

ϑ3(2τ, 0)
, h

(0,1)
1 (τ) = 2

1

ϑ2(2τ, 0)
,

h
(1,0)
0 (τ) = 4

ϑ3(2τ, 0)

ϑ4(τ, 0)2
, h

(1,0)
1 (τ) = −4

ϑ2(2τ, 0)

ϑ4(τ, 0)2
,

h
(1,1)
0 (τ) = 4

ϑ3(2τ, 0)

ϑ3(τ, 0)2
, h

(1,1)
1 (τ) = 4

ϑ2(2τ, 0)

ϑ3(τ, 0)2
. (2.9)

We now define the coefficients c
(r,s)
b (u) through the expansions

h
(r,s)
b (τ) =

∑

n∈ 1
2

̥−
1
4
b2

c
(r,s)
b (4n)qn, b = 0, 1 . (2.10)

Substituting (2.10) into (2.8) and using the Fourier expansions of ϑ3(2τ, 2z),

ϑ2(2τ, 2z) we get

F (r,s)(τ, z) =

1∑

b=0

∑

j∈2̥+b,n∈ 1
2

̥

c
(r,s)
b (4n − j2)e2πinτ+2πijz . (2.11)

Consider now the motion of a single D1-brane, wound w times along S1, inside a

D5-brane. The dynamics of this system is described by a superconformal field theory with

target space K3, but since the D1-brane has length w times the period of S1, one unit

of left-moving momentum along S1 will appear as w units of left-moving momentum (L0)

on the D1-brane. Also in the background of the Kaluza-Klein monopole the quantum

numbers (JL, JR) can be identified respectively with the S̃1 momentum J and the fermion

number F of the four dimensional theory [3, 5, 66]. We denote by (−1)j n(w, l, j; k) the

total number of bosonic minus fermionic states of this D1-brane, carrying g quantum

number (−1)k, momentum −l along S1 and momentum j along S̃1. Then it follows

from (2.6), (2.11) that [9, 18]5

n(w, l, j; k) =

1∑

s=0

(−1)sk c
(0,s)
b (4lw − j2) , l, w, j ∈ Z , b = jmod2, l ≥ 0, w ≥ 1 .

(2.12)

Using this and the techniques of [67] we can compute the contribution to the partition func-

tion from the general motion of the D1-branes inside a D5-brane, where we have excitations

involving multiple D1-branes carrying different values of w, l and j. This is given by

ZD1D5 = e−2πiσ
∞∏

w=1

∞∏

l=0

∏

j∈̥

1∏

k=0

(
1 − (−1)k e2πi(wσ+lρ+jv)

)−n(w,l,j;k)

= e−2πiσ
1∏

b=0

∞∏

w=1

∞∏

l=0

∏

j∈2̥+b

1∏

k=0

(
1 − (−1)k e2πi(wσ+lρ+jv)

)−P1
s=0 (−1)sk c

(0,s)
b (4lw−j2)

.

(2.13)

5The main difference between our results and those reviewed in [18] is that in [18] the g transformation

law was correlated with the momentum along S1. In our case they are independent data.
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The extra factor of e−2πiσ reflects that the total number of D1-branes is Q1 + 1 and not

Q1. This extra shift in Q1 by 1 accounts for the fact that a single D5-brane wrapped on

K3 carries −1 unit of D1-brane charge. Using the results

c
(0,0)
0 (0) = 10 , c

(0,0)
1 (−1) = 1 , c

(0,1)
0 (0) = 2 , c

(0,1)
1 (−1) = 1 ,

c
(1,0)
0 (0) = 4, c

(1,0)
1 (−1) = 0, c

(1,1)
0 (0) = 4, c

(1,1)
1 (−1) = 0 , (2.14)

we can express the total partition function as

Z(ρ, σ, v) = ZKKZcmZD1D5 = 1/Φ(ρ, σ, v) ,

Φ(ρ, σ, v) = e2πi(ρ+σ+v)
∞∏

w=0

∞∏

l=0

∏

j∈̥

j<0 for w=l=0

1∏

k=0

×
(
1 − (−1)k e2πi(wσ+lρ+jv)

)P1
s=0 (−1)sk c

(0,s)
b (4lw−j2)

,

b = jmod2 . (2.15)

The w = 0 term in the above product is obtained from the ZKKZcm term computed

from (2.4), (2.5).

3 Properties of the dyon partition function

Various symmetries of the dyon partition function are best studied by relating the function

Φ defined in (2.15) to a threshold integral [7, 9, 10, 61–63]. Most of the results that we

shall be using can be found in appendices C and D of [18] (the function Φ was called Φ̂

in [18]). We begin by defining:

Ω =

(
ρ v

v σ

)
, (3.1)

and

1

2
p2

R =
1

4det ImΩ
| −m1ρ+m2 + n1σ + n2(σρ− v2) + jv|2,

1

2
p2

L =
1

2
p2

R +m1n1 +m2n2 +
1

4
j2 . (3.2)

We now consider the integral [18]:

Î(ρ, σ, v) =

1∑

b=0

1∑

r,s=0

Îr,s,b , (3.3)

where

Îr,s,b =

∫

F

d2τ

τ2




∑

m1,n1∈̥,m2∈̥/2

n2∈2̥+r,j∈2̥+b

qp2
L/2q̄p2

R/2(−1)2m2sh
(r,s)
b (τ) − δb,0 δr,0 c

(0,s)
0 (0)


 ,

q ≡ e2πiτ . (3.4)
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F denotes the fundamental region of SL(2,Z) in the upper half plane. The subtraction

terms proportional to c
(0,s)
0 (0) have been chosen so that the integrand vanishes faster than

1/τ2 in the τ → i∞ limit, rendering the integral finite. Following the procedure described

in [7] one can show that [18]6

Î(ρ, σ, v) = −2 ln
[
(det ImΩ)k

]
− 2 ln Φ(ρ, σ, v) − 2 ln Φ(ρ, σ, v) + constant (3.5)

where bar denotes complex conjugation,

k =
1

2

1∑

s=0

c
(0,s)
0 (0) = 6 , (3.6)

and Φ is the same function that appears in the expression (2.15) for the partition function.

Due to the relation (3.5), symmetries of Φ can be determined from the symmetries

of Î [7].7 Consider in particular O(3, 2; Z) transformation on the variables (ρ, σ, v) and

(m1, n1,m2, n2, j) defined as follows:



m′
1

m′
2

n′1
n′2
j′




= S




m1

m2

n1

n2

j



,




σ′

ρ′σ′ − v′2

−ρ′

1

2v′




= λS




σ

ρσ − v2

−ρ

1

2v




(3.7)

where S is a 5 × 5 matrix with integer entries, satisfying

STLS = L, L =




0 I2 0

I2 0 0

0 0 1
2


 , (3.8)

and λ is a number to be adjusted so that the fourth element of the vector on the left hand

side of (3.7) is 1. In denotes n×n identity matrix. One can easily check that p2
R and p2

L are

invariant under these transformations. Thus as long as the transformation (3.7) preserves

the restriction on (m1, n1,m2, n2, j) in the sum in (3.4), and preserves m2 mod 1, this

transformation is a symmetry of Î, and hence of (det ImΩ)kΦΦ̄. From the known modular

transformation properties of det ImΩ it then follows that Φ transforms as a modular form of

weight k under these transformations. Since O(3, 2; Z) is isomorphic to the modular group

Sp(2; Z) of genus two Riemann surfaces we see that Φ is a modular form of a subgroup of

Sp(2,Z). The generators of this subgroup have been given explicitly in [6, 18].

A special subgroup of the symmetry group is generated by the following transforma-

tions:

(m1, n1,m2, n2, j) → (−n1,−m1,m2, n2,−j),

and (m1, n1,m2, n2, j) → (m1 − n1 − j, n1,m2, n2, j + 2n1) . (3.9)

6Note that although the definition of Φ contains only the coefficients c
(0,s)
b , bI given in (3.3), (3.4) contains

c
(r,s)
b for all (r, s). This is due to the fact that the manipulations leading to (3.5) makes use of the modular

property of h
(r,s)
b (τ ) and such modular transformations give h

(0,s)
b (τ ) in terms of h

(r′,s′)
b (τ ′) for all (r′, s′).

7Under some transformations bI may remain invariant but Φ may pick up a phase, but one can show

that for the symmetries which will be relevant for our discussion this does not happen.
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Via (3.7) these induce the symmetries

Φ(ρ, σ, v) = Φ(σ, ρ,−v), and Φ(ρ, σ, v) = Φ(ρ, σ + ρ− 2v, v − ρ) . (3.10)

As we shall see in section 4.1, these generate the S-duality symmetry of the partition

function Φ−1.

Eq. (3.5) also allows us to determine the zeroes and poles of Φ, since they correspond

to logarithmically divergent contribution to the threshold integral Î. A detailed analysis

can be found in [9, 18]; here we summarize the main results. Analyzing (3.4) one can show

that Î can get logarithmically divergent contributions when p2
R vanishes and p2

L = 1
4 for

one of the terms in the sum, ı.e. near the point

−m1ρ+m2 + n1σ + n2(σρ− v2) + jv = 0 , m1n1 +m2n2 +
j2

4
=

1

4
, (3.11)

where (m1, n1,m2, n2, j) takes one of the values which appear in the sum in (3.4). Near

such a point Φ(ρ, σ, v) behaves as [18]

Φ(ρ, σ, v) ∼ (−m1ρ+m2 + n1σ + n2(σρ− v2) + jv)
P1

s=0(−1)2 m2sc
(r,s)
1 (−1),

r = n2 mod 2, m1, n1, n2 ∈ Z, m2 ∈ Z/2 . (3.12)

Now from (2.14) we see that c
(1,s)
1 (−1) = 0 for all s. Thus there are no poles and zeroes of

Φ for odd n2. On the other hand for n2 even we have r = 0 in (3.12), and from (2.14) we get

1∑

s=0

(−1)2 m2 sc
(0,s)
1 (−1) = 1 + (−1)2 m2 . (3.13)

Thus Φ has a second order zero for even values of 2m2 in (3.12) and no poles.

4 Properties of the index

In this section we shall make use of the various properties of the dyon partition function

derived in section 3 to derive properties of the index Bg
6 . In particular we shall study the

properties of Bg
6 under S-duality, study the jump in Bg

6 under wall crossing and study the

asymptotic growth of Bg
6 for large charges. Our starting point will be (2.3), but using (2.1)

we shall express it as:

−Bg
6(Q,P ) = (−1)Q·P+1

∫

C
dρ dσ dv e

−2πi

„

σ P2

2
+ρ Q2

2
+vQ·P

«

1

Φ(ρ, σ, v)
. (4.1)

The integral has been written as an integral over a ‘contour’ C which, according to (2.3),

lies along the real (ρ, σ, v) axes. Naively in (2.3) we can fix Im(ρ), Im(σ) and Im(v) to

any values we like; however in order that (2.2) converges we need to choose the imaginary

parts of (ρ, σ, v) to lie in certain domains in R
3. As is well understood by now, the choice

of the imaginary parts of (ρ, σ, v) depend on the point in the moduli space of the theory we

are at [13, 14, 16, 17] since the spectrum — and hence the convergence property of (2.2) —
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changes discontinuously as the moduli cross the walls of marginal stability. Nevertheless

one finds that the function Z(ρ, σ, v) defined through (2.2) is the same — or more precisely

the analytic continuation of the same meromorphic function — irrespective of where in the

moduli space we compute it. The logic leading to this conclusion will be reviewed at the

end of section 4.1. This is equivalent to the statement that Bg
6 in different domains in the

moduli space are given by (4.1) with the same Φ, but the choice of the contour C is different

in different domains in the moduli space, dictated by the convergence of the sum in (2.2).

A convenient prescription for the choice of contour as a function of the moduli is [17]

Im(σ) = Λ


 |τ |2

τ2
+

Q2
R√

Q2
RP

2
R − (QR · PR)2


 , 0 ≤ Re(σ) ≤ 1 ,

Im(ρ) = Λ


 1

τ2
+

P 2
R√

Q2
RP

2
R − (QR · PR)2


 , 0 ≤ Re(ρ) ≤ 1 ,

Im(v) = −Λ


τ1
τ2

+
QR · PR√

Q2
RP

2
R − (QR · PR)2


 , 0 ≤ Re(v) ≤ 1 , (4.2)

where Λ is a large positive number,

Q2
R = Q2 +QTMQ, P 2

R = P 2 + P TMP, QR · PR = Q · P +QTMP , (4.3)

τ ≡ τ1 + iτ2 denotes the asymptotic value of the axion-dilaton moduli which belong to the

gravity multiplet and M is the asymptotic value of the symmetric O(6, 22) matrix valued

moduli field of the matter multiplet, — in the heterotic description these represent the

moduli of T 6 and Wilson lines along T 6. The choice (4.2) of course is not unique since

we can deform the contour without changing the result for the index as long as we do not

cross a pole of the partition function. However (4.2) gives a useful bookkeeping device for

associating domains in the moduli space to domains in the (Im(ρ), Im(σ), Im(v)) space.

Under small deformations of the moduli (τ,M), (4.2) induces small deformations of the

contour C. While generically the value of the integral does not change under such small de-

formations, the result does change if the contour (4.2) crosses a zero of Φ. Physically these

jumps are associated with the jumps in the index across walls of marginal stability [13, 14].

Using T-duality symmetry of the theory one can argue that any other charge vector

that can be related to the D1-D5-KK monopole system considered here via a g-invariant

T-duality transformation will have Bg
6 given by (4.1). The choice of contour given in (4.2)

is manifestly invariant under T-duality transformation.

4.1 S-duality invariance

S-duality transformations act on the charges and moduli as
(
Q

P

)
→

(
Q′

P ′

)
=

(
a b

c d

)(
Q

P

)
, τ → τ ′ =

aτ + b

cτ + d
, M →M ,

(
a b

c d

)
∈ SL(2,Z) .

(4.4)
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We want to show that (4.1), with the choice of contour given in (4.3), is invariant under

this transformation. Let us define

σ′ = a2σ + b2ρ− 2abv ,

ρ′ = c2σ + d2ρ− 2cdv ,

v′ = −acσ − bdρ+ (ad+ bc)v . (4.5)

One can easily verify that

e−πi(ρ Q2+σ P 2+2v Q·P ) = e−πi(ρ′Q′2+σ′P ′2+2v′Q′·P ′) , (4.6)

and

dρ dσ dv = dρ′ dσ′ dv′ . (4.7)

Furthermore, using the results Q2, P 2 ∈ 2Z and Q · P ∈ Z one finds that (−1)Q·P =

(−1)Q
′·P ′

. Using these relations we can rewrite (4.1) as

Bg
6(Q,P ; τ,M) = (−1)Q

′·P ′+1

∫

C
dρ′dσ′ dv′ e

−2πi

„

σ′ P ′2

2
+ρ′ Q′2

2
+v′Q′·P ′

«

1

Φ(ρ, σ, v)
. (4.8)

Note that we have now explicitly indicated the dependence of Bg
6 on the moduli τ , M via

the choice of the contour (4.2). One can now further observe that

• The choice of the contour C given in (4.2) is S-duality covariant under simultaneous

S-duality transformation on (τ,Q, P ) given in (4.4) and of (ρ, σ, v) given in (4.6).

Thus we can replace C by C ′ in (4.8) with the understanding that C ′ corresponds to

the contour where all the variables are replaced by primed variables in (4.2).

• We have the relation

Φ(ρ, σ, v) = Φ(ρ′, σ′, v′) . (4.9)

This follows from the fact that (3.10) corresponds to invariance of Φ under (4.5) for
(
a b

c d

)
=

(
0 1

−1 0

)
, and

(
a b

c d

)
=

(
1 1

0 1

)
, (4.10)

and that the two matrices in (4.10) generate the whole S-duality group.

Using these two results we can rewrite (4.8) as

−Bg
6(Q,P ; τ,M) = (−1)Q

′·P ′+1

∫

C′

dρ′dσ′ dv′ e
−2πi

„

σ′ P ′2

2
+ρ′ Q′2

2
+v′Q′·P ′

«

1

Φ(ρ′, σ′, v′)

= −Bg
6(Q′, P ′; τ ′,M) . (4.11)

This finishes the proof of S-duality invariance of Bg
6 .

In practice we derive the expression (4.1), (4.2) for the index only in certain domains

in the moduli space where the type IIB string theory is weakly coupled [9, 18] and then ex-

tend the result to other domains by requiring S-duality invariance of the spectrum [13, 14].

Thus our analysis in this section should really be regarded as a proof not of S-duality

invariance but of (4.1), (4.2), — ı.e. of the statement that the same function Φ can be

used to capture the index in different domains in the moduli space just by changing the

contour according to (4.2).
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4.2 Wall crossing

If we keep the charges fixed and vary the asymptotic moduli then the integration contour

C varies. When it hits a pole of the integrand there is a jump in Bg
6 given by the residue of

the integrand at the pole. The physical interpretation of this jump is that at these points

in the moduli space we have a wall of marginal stability and the jump in the degeneracy is

due to the jump in the index across the wall of marginal stability [13, 14]. One can show

that [13] the poles which are encountered in this process are of the form

σγ − ρβ + v(α− δ) = 0 , αδ = βγ, α+ δ = 1, α, β, γ, δ ∈ Z . (4.12)

The corresponding wall of marginal stability is associated with the decay

(Q,P ) → (αQ+ βP, γQ+ δP ) + (δQ− βP,−γQ+ αP ) . (4.13)

In fact via S-duality transformation all of these decays can be related to the decay [13]

(Q,P ) → (Q, 0) + (0, P ) , (4.14)

and the corresponding pole of the partition function is at

v = 0 . (4.15)

Using (2.15) and the identity

1∑

b=0

∑

j∈2̥+b

c
(r,s)
b (4n − j2) = δn,0 {c

(r,s)
0 (0) + 2 c

(r,s)
1 (−1)} , (4.16)

we see that for small v

Φ(ρ, σ, v) = −4π2 v2 g(ρ) g(σ) + O(v4) , (4.17)

g(ρ) ≡ e2πiρ
∞∏

n=1

(
1 − e2πinρ

)16 (
1 + e2πinρ

)8
. (4.18)

Thus the jump in the index, given by the residue at the pole of the integrand in (4.1) at

v = 0, is given by8

∆Bg
6 = (−1)Q·P+1(Q · P ) f(Q) f(P ) , (4.19)

where

f(Q) =

∫ 1

0
dρ e−iπρQ2 1

g(ρ)
. (4.20)

It is easy to see that 1/g(ρ) is precisely the partition function that computes the Bg
4 index

of the dyons carrying charges (Q, 0) (ı.e. the KK monopole carrying momentum along S1)

or (0, P ) (ı.e. the D1-D5 system carrying momentum along S̃1) and preserving half of the

g-invariant supersymmetries. For example 1/g(ρ) is precisely the partition function of the

Kaluza-Klein monopole given in (2.4) after removing the contribution from the fermion

zero modes. Thus (4.19) can be rewritten as

∆Bg
6 = (−1)Q·P+1 (Q · P )Bg

4((Q, 0))Bg
4 ((0, P )) , (4.21)

in agreement with the wall crossing formula for the index B6 [68].

8The sign of ∆Bg
6 of course depends on in which direction the contour crosses the pole, which in turn is

determined by the direction in which the moduli cross the wall of marginal stability.
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4.3 Asymptotic growth

We shall now study the asymptotic growth of the index Bg
6 for large charges. As was shown

in [1, 2, 6, 9] and reviewed in [18], when Q2, P 2 and Q · P are all large and of the same

order the asymptotic growth of the index, given by (2.3), is controlled by the pole of the

partition function, ı.e. zeroes of Φ at

−m1ρ+m2 + n1σ + n2(σρ− v2) + jv = 0 , m1n1 +m2n2 +
j2

4
=

1

4
, (4.22)

for |n2| > 0. Furthermore the contribution from a pole of this type is of order

exp
[
π
√
Q2P 2 − (Q · P )2/|n2| + · · ·

]
, (4.23)

where · · · denotes terms which are of order unity or suppressed by powers of the charges.

Thus the leading contribution to the entropy comes from the poles with lowest possible

non-zero value of |n2|. Since from the analysis below (3.12) it follows that Φ has no zeroes

for odd n2 we see that the leading contribution to Bg
6 comes from the pole(s) with |n2| = 2.

Thus for large charges we have

ln |Bg
6 | =

π

2

√
Q2P 2 − (Q · P )2 + · · · . (4.24)

Since the entropy of a BPS black hole carrying these charges is given by

π
√
Q2P 2 − (Q · P )2 [69, 70], we see that ln |Bg

6 | is half of the entropy of a black hole

carrying the same charges (and also half of the ‘entropy’ computed from the usual helic-

ity trace index B6). We shall provide a macroscopic explanation of this phenomenon in

section 6.

5 Generalization to ZN twisted index

The above results can be easily generalized to the case where the theory under consid-

eration is type IIB string theory on M × T 2 where M can be either T 4 or K3, and

the Z2 symmetry generator g is replaced by a ZN symmetry generator g that has a

geometric action on K3 or T 4, and commutes with an N = 4 subalgebra of the full

supersymmetry algebra. This implies that for M = T 4 g commutes with half of the 32

supersymmetries, while for M = K3 g must commute with all the 16 supersymmetries.9

The ZN transformations we shall be using can be found in [11] and references therein.

However unlike in [11], we are not computing the spectrum in a new theory obtained by

taking a ZN orbifold of the original theory. Our interest is to compute the g twisted index

Bg
6 in the original theory, ı.e. in type IIB string theory on T 4 × T 2 or K3 × T 2.

The dyon system we consider is identical to the one described in section 2, with the

only difference that for M = T 4 we denote the number of D1-branes by Q1. The method

of analysis is also identical to that in section 2 and all the technical results needed for the

9Following the same set of duality transformations as in the Z2 example described earlier, one can map

this theory to type II or heterotic string theory on T 6, with the ZN acting only on the left-moving fields

on the world-sheet.
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computation can be found in [11, 18]. The only extra complication for M = T 4 arises

from the additional degrees of freedom associated with the Wilson line on the D5-brane

along T 4, but their effect can be easily computed since the quantum numbers and the g

transformation laws of these additional degrees of freedom have been given in [11, 18]. We

shall describe only the final results. First we define

F (r,s)(τ, z) ≡
1

N
TrRR;gr

(
gs(−1)JL+JRe2πiτL0e−2πiτ̄ L̄0e2πiJLz

)
,

0 ≤ r, s ≤ N − 1, r, s ∈ Z , (5.1)

where Tr denotes trace over all the gr twisted RR sector states in the (4,4) superconformal

field theory with target space M, and JL/2 and JR/2 denote the generators of the U(1)L×

U(1)R subgroup of the SU(2)L × SU(2)R R-symmetry group of this conformal field theory.

For M = T 4 the computation of F (r,s) is straightforward since we have a free conformal

field theory. For M = K3 we can calculate F (r,s) by working at special points in the

moduli space e.g. at the orbifold points or the Gepner points. For prime values of N

explicit expression for F (r,s) can be found in [7, 10, 18]. On general grounds F (r,s)(τ, z)

can be shown to have an expansion of the form

F (r,s)(τ, z) =

1∑

b=0

∑

j∈2̥+b,n∈̥/N

4n−j2≥−b2

c
(r,s)
b (4n− j2)e2πinτ+2πijz . (5.2)

This defines the coefficients c
(r,s)
b (u). We also define

Qr,s = N
(
c
(r,s)
0 (0) + 2 c

(r,s)
1 (−1)

)
. (5.3)

Some useful relations are

c
(0,s)
1 (−1) =

{
2
N for M = K3
1
N

(
2 − e2πis/N − e−2πis/N

)
for M = T 4

. (5.4)

The index Bg
6 is then given by

−Bg
6(Q,P ) = (−1)Q·P+1

∫ 1

0
dρ

∫ 1

0
dσ

∫ 1

0
dv e−πiσ P 2−πiρ Q2−2πiv Q·P 1

Φ(ρ, σ, v)
, (5.5)

where

Φ(ρ, σ, v) = C3 e2πibα(ρ+σ+v)

×
1∏

b=0

N−1∏

r=0

∏

(k′,l)∈̥,j∈2̥+b

k′,l≥0,j<0 for k′=l=0

{
1 − e2πir/N e2πi(k′σ+lρ+jv)

}PN−1
s=0 e−2πirs/N c

(0,s)
b (4k′l−j2)

,

(5.6)

α̂=

{
1 for M = K3

0 for M = T 4
, C=

{
1 for M = K3
(
1 − e2πi/N

)−1 (
1 − e−2πi/N

)−1
for M = T 4

.

(5.7)
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The factor of C3 in Φ comes from the quantization of the g non-invariant fermion zero

modes carrying no J quantum number.

The threshold integral that can be used to derive various properties of Φ is given by

(see appendix C of [18])

Î(ρ, σ, v) =

N−1∑

r,s=0

1∑

b=0

Îr,s,b , (5.8)

where

Îr,s,b =

∫

F

d2τ

τ2




∑

m1,n1∈̥,m2∈̥/N

n2∈N̥+r,j∈2̥+b

qp2
L/2q̄p2

R/2e2πim2sh
(r,s)
b (τ) − δb,0δr,0c

(0,s)
0 (0)


 ,

q ≡ e2πiτ , (5.9)

1

2
p2

R =
1

4det ImΩ
| −m1ρ+m2 + n1σ + n2(σρ− v2) + jv|2,

1

2
p2

L =
1

2
p2

R +m1n1 +m2n2 +
1

4
j2 , (5.10)

Ω =

(
ρ v

v σ

)
, (5.11)

and F denotes the fundamental region of SL(2,Z) in the upper half plane. Î is related to

Φ by the relation

Î(ρ, σ, v) = −2 ln
[
(det ImΩ)k

]
− 2 ln Φ(ρ, σ, v) − 2 ln Φ(ρ, σ, v) + constant (5.12)

where

k =
1

2

N−1∑

s=0

c
(0,s)
0 (0) . (5.13)

By making the rearrangement

(m1, n1,m2, n2, j) → (−n1,−m1,m2, n2,−j),

and (m1, n1,m2, n2, j) → (m1 − n1 − j, n1,m2, n2, j + 2n1) , (5.14)

one can prove the invariance of Î and of Φ under the transformations

(ρ, σ, v) → (σ, ρ,−v), and (ρ, σ, v) → (ρ, σ + ρ− 2v, v − ρ) . (5.15)

As in the case of Z2 twisted index in type IIB string theory onK3×T 2, the symmetry (5.15)

can be used to prove the S-duality invariance of the partition function. More generally Φ

transforms as a modular form of weight k under a subgroup of O(3, 2; Z), cconsisting of

O(3, 2) matrices which, acting as in (3.7), preserves the restrictions on (~m,~n, j) in the sum

in (5.9), and preserves m2 mod 1 so that the e2πim2s factor in (5.9) also remains invariant.

The generators of this subgroup of Sp(2,Z) have been given explicitly in [11, 18].
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The zeroes and poles of Φ can also be found from Î following the analysis of [9, 11]

reviewed in [18] (appendix D). The result is that the zeroes and poles of Φ are of the

following form:

Φ ∼
(
n2(σρ− v2) + jv + n1σ − ρm1 +m2

)PN−1
s=0 e2πim2s c

(r,s)
1 (−1)

,

m1, n1, n2 ∈ Z, j ∈ 2Z + 1, m2 ∈ Z/N, r = n2 modN, m1n1 +m2n2 +
j2

4
=

1

4
.

(5.16)

For N ≥ 5, we also have additional zeroes/poles of the type

Φ ∼
(
n2(σρ− v2) + jv + n1σ − ρm1 +m2

)PN−1
s=0 e2πim2s c

(r,s)
1 (−1+ 4p

N
)
,

m1, n1, n2 ∈ Z, j ∈ 2Z + 1, m2 ∈ Z/N, r = n2 modN,

m1n1 +m2n2 +
j2

4
=

1

4
−

p

N
, p ∈ Z, 1 ≤ p <

N

4
. (5.17)

It was argued in [18] (appendix D) that the exponents in (5.16) and (5.17) are always

negative or zero for r 6= 0 mod N , hence they correspond to poles of Φ.10 Since our main

interest is in determining the poles of the partition function which come from the zeroes

of Φ, we can ignore the contribution from the r 6= 0 terms. For r = 0 we must have n2 = 0

mod N . In this case the constraints on (mi, ni, j) forces p to vanish in (5.17), reducing it

to the case described in (5.16). Finally using the identities reviewed in [18]

M = K3 :

N−1∑

s=0

e2πils/N c
(0,s)
1 (−1) =

{
2 for l ∈ NZ

0 otherwise
,

M = T 4 :

N−1∑

s=0

e2πils/N c
(0,s)
1 (−1) =





2 for l ∈ NZ

−1 for l ∈ NZ ± 1

0 otherwise

, (5.18)

we see that only zeroes of Φ, both for K3 and T 4, arise from the choice m2 ∈ Z in (5.16)

and are of the form

Φ ∼
(
n2(σρ− v2) + jv + n1σ − ρm1 +m2

)2

m1, n1,m2 ∈ Z, n2 ∈ NZ, j ∈ 2Z + 1, m1n1 +m2n2 +
j2

4
=

1

4
. (5.19)

The knowledge of the zeroes of Φ gives us two important informations. First of all

the zeroes of the form described in (4.12), obtained by choosing n2 = 0 in (5.19), give us

information on wall crossing for the decay (4.13). Again using S-duality transformation

all such decays can be related to the decay given in (4.14) with the corresponding wall at

10For prime values of N explicit computation using known values of c
(r,s)
1 (u) shows that the exponent

in (5.16) always vanishes for r 6= 0, whereas the exponent in (5.17) is given by −48/(N2 − 1) for N = 5 and

N = 7 when m2r = −1/N and vanishes otherwise.
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v = 0. Using (5.6) and the identity

1∑

b=0

∑

j∈2̥+b

c
(r,s)
b (4n − j2) = δn,0 {c

(r,s)
0 (0) + 2 c

(r,s)
1 (−1)} , (5.20)

one finds that near v = 0,

Φ(ρ, σ, v) = −4π2 v2 g(ρ) g(σ) + O(v4) , (5.21)

where

g(ρ) = C2 e2πibαρ
N−1∏

r=0

∞∏

n=1

{
1 − e2πir/N e2πinρ

}PN−1
s=0 e−2πirs/N

“

c
(0,s)
0 (0)+2c

(0,s)
1 (−1)

”

. (5.22)

The constant C has been defined in (5.7). Using (5.21) we see that the jump in Bg
6 across

the wall of marginal stability, given by the residue of the integrand in (5.5) at the pole at

v = 0, is given by

(−1)Q·P+1Q · P f(Q) f(P ) , (5.23)

where

f(Q) =

∫ 1

0
dρ e−iπQ2ρ (g(ρ))−1 dρ . (5.24)

It is easy to check, e.g. by computing the index Bg
4 of a Kaluza-Klein monopole carrying

momentum along S1, that f(Q) and f(P ) have the interpretation of the index Bg
4 for dyons

carrying charge (Q, 0) and (0, P ) respectively. Thus we get

∆Bg
6 = (−1)Q·P+1 (Q · P )Bg

4((Q, 0))Bg
4 ((0, P )) , (5.25)

in agreement with the expected wall crossing formula for the index B6.

The second application of the knowledge of the zeroes of Φ is in the determination of

the asymptotic behaviour of Bg
6 for large charges. They are controlled by the zeroes of Φ

given in (5.19) for |n2| > 0. The constraint n2 ∈ NZ in (5.19) implies that the lowest value

of |n2| other than zero for which there is a pole is |n2| = N . The analysis of the asymptotic

growth of the index, which is controlled by this pole, then tells us that the index grows as

exp
(
π
√
Q2P 2 − (Q · P )2/N

)
. (5.26)

6 Macroscopic explanation from quantum entropy function

The near horizon attractor geometry of an extremal black hole in four dimensions contains

an AdS2 ×S
2 factor. After euclidean continuation the metric on AdS2 ×S

2 takes the form

ds2 = v1(dη
2+sinh2 ηdθ2)+v2(dψ

2+sin2 ψdφ2) , 0 ≤ η <∞, θ ≡ θ+2π, (ψ, φ) ∈ S2 ,

(6.1)

where v1 and v2 are constants whose values are determined by the charges carried by the

black hole. Besides the metric the background also has non-vanishing fluxes through various
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cycles and constant vacuum expectation values of the scalars which we have not written

down explicitly. These background fields respect the SO(3)×SO(2, 1) isometry of AdS2×S
2.

According to the quantum entropy function proposal [41, 42] (see also [71]) the degen-

eracy associated with the black hole horizon is given by an appropriate path integral of

string theory in the euclidean near horizon geometry of the black hole. More precisely the

degeneracy associated with the black hole horizon is given by

dhor(~q) = Zfinite , (6.2)

Z ≡

〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉

AdS2

. (6.3)

Here 〈 〉 denotes the result of path integral over the string fields, qi are the electric charges

describing fluxes of the U(1) gauge fields A
(i)
µ in AdS2 and

∮
dθ denotes an integral along

the boundary of AdS2. The superscript ‘finite’ refers to the infrared finite part of the

amplitude defined as follows. If we carry out the path integral by putting an infrared

cut-off at η = η0 so that the boundary has a finite length L, then we may express Z

computed via (6.3) as [41, 42]

Z = eCL+O(L−1) Zfinite . (6.4)

for some L independent constant C. As indicated in (6.4), Zfinite is obtained by removing

the eCL factor from Z and taking the L → ∞ limit. This prescription for computing

dhor(~q) follows naturally from AdS2/CFT1 correspondence and reduces to the exponential

of the Wald entropy in the classical limit [41].

In (6.3) the path integral is to be carried out over all string field configurations whose

asymptotic geometry coincides with the attractor geometry. In particular in integrating

over the gauge fields we must keep the electric fields fixed at infinity and allow the constant

modes of A
(i)
θ to fluctuate [41]. This follows from the fact that the electric field modes rep-

resent non-normalizable deformations of AdS2 whereas the constant A
(i)
θ modes represent

normalizable deformations. With this prescription one can argue, via AdS2/CFT1 corre-

spondence, that the dhor defined in (6.2), (6.3) measures the degeneracy of a dual quantum

mechanical system whose Hilbert space is degenerate and finite dimensional, containing

the grounds states of the black hole carrying a fixed set of charges.

Since dhor measures the degeneracy associated with the horizon whereas in the mi-

croscopic analysis we calculate an index, one might wonder how we can compare the two

quantities. For the helicity trace index B2n this issue was addresed in [42] where the fol-

lowing explanation was offered. The main idea is to try to compute the index B2n on the

macroscopic side as well and then compare this with the microscopic result. The first step is

to note that the factors of 2h inserted into the trace are used in soaking up the fermion zero

modes associated with the broken supersymmetries. Typically these modes are always part

of the hair degrees of freedom of the black hole, ı.e. live outside the horizon. This allows us

to relate B2n to Tr(−1)2h associated with the horizon degrees of freedom [42]. In fact if the

only hair degrees of freedom are the fermion zero modes associated with broken supersym-

metry then, up to a sign, the macroscopic B2n can be shown to be equal to Tr(−1)2h asso-

ciated with the horizon degrees of freedom. The second step is to note that although from
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the point of view of the asymptotic observer 2h measures angular momentum, in AdS2 it

can be regarded as an electric charge of the U(1) ⊂ SU(2) gauge field A associated with the

rotational isometry of S2 [72]. Thus while carrying out the path integral this charge must

be fixed, and in fact has zero value since the attractor geometry is spherically symmetric.11

Thus we have (−1)2h = 1 and B2n can be directly related to dhor defined in (6.2), (6.3). Put

another way, computation of Tr(−1)2h can be expressed as a path integral of the kind de-

scribed in (6.3), but with a twisted boundary condition that requires the fields to transform

by (−1)2h as θ changes by 2π. This can be regarded as a Wilson line of A along the bound-

ary circle. But while carrying out the path integral over the gauge fields we are instructed

to integrate over the Wilson lines of A along the boundary circle keeping the electric fields

fixed. Thus a background Wilson line along the boundary circle can be removed by a shift

in the integration variables and does not affect the final value of the path integral.

If we try to follow a similar logic for the index Bg
2n then the first part of the argument

goes through as usual, ı.e. the factors of (2h)2n inserted into the trace are absorbed by the

fermion zero modes living on the hair. At the end we are left with Tr(−1)2hg associated

with the horizon degrees of freedom. This can be expressed as a path integral similar to

the one described in (6.2), (6.3), but with a twisted boundary condition on the fields which

require the fields to transform by g(−1)2h as θ changes by 2π. Let us call this partition

function Zg. Of these the factor of (−1)2h can be removed by the same argument described

above. For the factor of g there are two possibilities. If g can be regarded as a rigid gauge

transformation for some U(1) gauge field living on AdS2 — like (−1)2h as an element of

the gauge group associated with the rotational invariance on S2 — then the effect of the

insertion of g is a background value of the Wilson line associated with the gauge group.

Since in carrying out the path integral we integrate over the mode representing the Wilson

line at the boundary, the effect of g insertion has no effect. Alternatively one can say that

since the electric charges associated with all the gauge fields are fixed at the boundary, all

states which contribute to dhor have the same value of g and hence the effect of insertion of g

into the trace is trivial. On the other hand if g is not an element of a U(1) gauge group then

there is no such interpretation. In this case the attractor geometry is not a valid saddle point

in the theory, since the boundary circle along which we insert the twist by g is contractible at

the center of AdS2 (η = 0) and a twist by g will produce a singularity at the center of AdS2.

This however is not the end of the story. In carrying out the string path integral

we are instructed to integrate over all configurations preserving the required boundary

condition at η → ∞. So we can look for other saddle points. One of the criteria one

must use in searching for these saddle points is supersymmetry; if the saddle point breaks

too much supersymmetry then integration over the associated fermion zero modes will

make the path integral vanish. It was shown in [73] that if we take an orbifold of the

11In classical supergravity in four dimensional Minkowski space all supersymmetric black holes are spheri-

cally symmetric. One can argue that supersymmetric black holes whose near horizon geometry has an AdS2

factor must be spherically symmetric even in the full theory. For this we note that due to the presence

of the AdS2 throat, the full symmetry algebra at the horizon contains an sl(2, R) subalgebra besides the

supersymmetry generators. The (anti-)commutators of the sl(2, R) and the supersymmetry generators then

generate the su(1, 1|2) algebra which contains su(2) as its subalgebra.
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original geometry by a transformation that involves equal amount of rotation in AdS2 and

S2, possibly accompanied by another symmetry that commutes with supersymmetry, then

the resulting orbifold, if consistent, preserves the necessary number of supersymmetries

so that the contribution from this saddle point to the path integral does not vanish due

to integration over the fermion zero modes. This suggests the following procedure for

constructing a saddle point that contributes to Bg
6 : we take the original attractor geometry

geometry and then take an orbifold of this by a ZN transformation that combines the action

of g with a shift of θ by 2π/N and a shift of φ by 2π/N . It can be shown following [74]

that this geometry satisfies the required boundary condition as η → ∞. For this we need

to carry out a rescaling θ → θ/N , η → η + lnN so that in the new coordinate system the

AdS2 part of the metric takes the form:

v1
[
dη2 +N−2 sinh2 (η + lnN) dθ2

]
= v1

[
dη2 +

{
sinh η +

1

2
e−η (1 −N−2)

}2

dθ2

]
.

(6.5)

Clearly as η → ∞ the metric approaches that of AdS2. The orbifold group now acts as

θ → θ + 2π, φ → φ+ 2π
N together with an action of g. The g action is exactly as required

for computing the g twisted index. On the other hand the 2π/N rotation in φ is part

of a gauge transformation from the point of view of the theory on AdS2 and hence, by

our previous argument, has no effect on the macroscopic computation of the index, except

possibly an overall phase. Put another way, the path integral involves integrating over all

values of the Wilson line at ∞, and hence a saddle point corresponding to any specific value

of the Wilson lline is an admissible configuration in the path integral. Thus we conclude

that this saddle point contributes to Zg.

It follows from the analysis of [74] that the semiclassical contribution to Zfinite
g from

this saddle point is given by exp(Swald/N) where Swald is the Wald entropy of the BPS

black hole carrying the same set of charges. The argument is fairly straightforward: if we

keep the cut-off of η fixed as we take the orbifold action, then the classical action gets

divided by N . On the other hand the length of the boundary also gets divided by N . Thus

after subtracting the term proportional to the length of the boundary to extract the finite

part of the action, we find that the finite part of the action for the orbifold is 1/N times

the finite part of the action for the original attractor geometry. Since the latter is given by

Swald = π
√
Q2P 2 − (Q · P )2, we get

Zfinite
g ∼ exp

[ π
N

√
Q2P 2 − (Q · P )2

]
. (6.6)

This is in agreement with the microscopic result given in (5.26).

One possible problem with this construction however is that this saddle point has a

ZN orbifold singularity on a codimension eight subspace that lies at the center of AdS2,

either at the north or the south pole of S2 and at the fixed points of g in M. In the absence

of flux this is a consistent orbifold of string theory, but it is not clear if the presence of

the background flux makes the orbifold inconsistent. If the attractor geometry contains a

circle C then one way to avoid the existence of the orbifold singularity is to accompany the

ZN transformation also by 1/N unit of shift along C [42, 75, 76]. The ZN now acts freely
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on the attractor geometry and hence there is no fixed point. By our previous argument

the 1/N unit of shift along C under θ → θ + 2π effectively amounts to switching on a

Wilson line at the boundary of AdS2 and hence is an admissible saddle point. However in

this case there is another subtlety, arising from the fact that at the origin of AdS2 ı.e. at

η = 0, the shift along θ is irrelevant. Thus we have an identification under φ→ φ+ 2π/N

together with the action of g and 1/N unit of shift along C. As a result at the center

of AdS2 any magnetic flux through the three cycle S2 × C, possibly accompanied by

some other cycles of M× T 2, will get divided by N , and unless the original flux through

this cycle is a mutiple of N , the orbifold is not a consistent background of string theory.

Thus we must judiciously choose the circle C such that C × S2 either does not carry any

magnetic flux or carries N units of magnetic flux. In the present example S1 provides us

with such a circle, in a spirit close to the one discussed in [75].

This finishes our proof that the macroscopic ‘entropy’ associated with the index Bg
6

grows as π
√
Q2P 2 − (Q · P )2/N for large charges, in agreement with the microscopic

results.

7 Discussion

In this paper we have computed the twisted helicity trace index for a class of dyons in type

II string theory compactified on T 6 or K3×T 2 and studied their properties. We have also

provided a macroscopic explanation for the observed asymptotic growth of this index by

identifying the leading saddle point in the path integral which contributes to this index.

One of the special features of an index of this type is that in deriving the various general

properties of this index we can focus on supersymmetries which commute with this twist.

In particular if the full theory has M supersymmetries, and if only N of these commute

with this twist, then the general properties of the index (e.g. under wall crossing) will be

similar to those of the usual helicity trace index in a theory with N supersymmetries.

We shall now give some more examples of such indices which could have potential appli-

cation. Consider type IIB / IIA string theory compactified on T 6. The spectrum of elemen-

tary strings in this theory contains quarter BPS states obtained by keeping the right-moving

world-sheet degrees of freedom in their ground state and exciting only the left-moving

modes. Since these states break 24 out of 32 supersymmetries, the relevant index for these

states is B12. This can be easily computed in the light-cone gauge Green-Schwarz formula-

tion, where the world-sheet degrees of freedom consist of 8 scalars, 8 left-moving fermions

and eight right-moving fermions. However it turns out that due to an extra cancelation

between the bosonic and fermionic states in the left-moving sector of the world-sheet, B12

grows with charges at a rate much lower than the rate at which the absolute degeneracies

grow [77, 78]. Thus the contribution from most of the states cancel due to the cancelation

between the contributions from fermionic and bosonic states, — indeed whereas the degen-

eracies grow exponentially with the charges, the index grows only as a power of the charges.

However consider now the subspace of the full moduli space of the theory where we set

all the Ramond-Ramond (RR) moduli to zero. In this subspace the theory has a discrete

symmetry denoted as (−1)FL that changes the signs of all the RR and R-NS sector states.
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Since elementary string states only carry charges under the NS −NS sector gauge fields,

these charges are automatically invariant under (−1)FL . Thus we can choose g = (−1)FL

for defining a new index Bg
2n. For elementary string states in the ground state of the

right-moving sector but with arbitrary excitations in the left-moving sector of the world-

sheet all the 16 supersymmetries in the R-NS sector, and 8 supersymmetries in the NS-R

sector are broken. Thus we have 16 g-odd and 8 g-even broken supersymmetries, and these

elementary string states contribute to Bg
4 . The eight g-invariant fermion zero modes from

the right-moving sector are soaked up by the factor of (2h)4, whereas the eight fermion

zero modes from the left-moving sector are even under (−1)FL(−1)2h = (−1)FR and hence

gives a factor of 24 = 16 in the trace. The rest of the computation involves keeping the

right-movers in their ground state and computing the degeneracy of states created by the

left-moving oscillators without any weight factor. As a result there is no cancelation, and

Bg
4 grows at the same rate as the degeneracy, ı.e. exponentially, according to the Cardy

formula for a CFT with eight bosons and eight fermions.

The next example involves quarter BPS states in the heterotic string theory on T 6.

Since these states break 12 out of 16 supersymmetries the appropriate index is B6. But

we can consider a subspace of the moduli space where T 6 factorizes into a product of T 4

and T 2. In this subspace the theory has an extra discrete symmetry that involves reversing

the sign of the four coordinates of T 4. We identify this as our symmetry g. If we consider

charge vectors which carry only momentum and winding charges, and KK monopole and

H-monopole charges along the two circles of T 2 then these charges are invariant under

g. Thus we can define an index Bg
2n for these charges. Under the action of g half of

the 16 supersymmetries are odd and half are even, but one can show that all the 8 g-odd

supersymmetries are broken by the dyon. Thus these dyons have 4 broken supersymmetries

which are even under g, and hence contribute to the index Bg
2 . We expect this index to have

properties similar to that of B2, — the index that is relevant for capturing the spectrum of

half BPS states in N = 2 supersymmetric string theories.12 In particular the wall crossing

formula for this index will be controlled by the Kontsevich-Soibelman formula [79, 80].
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