1,078 research outputs found
Galaxy Selection and Clustering and Lyman alpha Absorber Identification
The effects of galaxy selection on our ability to constrain the nature of
weak Ly\alpha absorbers at low redshift are explored. Current observations
indicate the existence of a population of gas-rich, low surface brightness
(LSB) galaxies, and these galaxies may have large cross sections for Ly\alpha
absorption. Absorption arising in LSB galaxies may be attributed to HSB
galaxies at larger impact parameters from quasar lines of sight, so that the
observed absorption cross sections of galaxies may seem unreasonably large.
Thus it is not possible to rule out scenarios where LSB galaxies make
substantial contributions to Ly\alpha absorption using direct observations.
Less direct tests, where observational selection effects are taken into account
using simulations, should make it possible to determine the nature of Ly\alpha
absorbers by observing a sample of ~100 galaxies around quasar lines of sight
with well-defined selection criteria. Such tests, which involve comparing
simulated and observed plots of the unidentified absorber fractions and
absorbing galaxy fractions versus impact parameter, can distinguish between
scenarios where absorbers arise in particular galaxies and those where
absorbers arise in gas tracing the large scale galaxy distribution. Care must
be taken to minimize selection effects even when using these tests. Results
from such tests are likely to depend upon the limiting neutral hydrogen column
density. While not enough data are currently available to make a strong
conclusion about the nature of moderately weak absorbers, evidence is seen that
such absorbers arise in gas that is around or between galaxies that are often
not detected in surveys.Comment: 15 pages, 10 figures, accepted to the Astrophysical Journa
Automated reliability assessment for spectroscopic redshift measurements
We present a new approach to automate the spectroscopic redshift reliability
assessment based on machine learning (ML) and characteristics of the redshift
probability density function (PDF).
We propose to rephrase the spectroscopic redshift estimation into a Bayesian
framework, in order to incorporate all sources of information and uncertainties
related to the redshift estimation process, and produce a redshift posterior
PDF that will be the starting-point for ML algorithms to provide an automated
assessment of a redshift reliability.
As a use case, public data from the VIMOS VLT Deep Survey is exploited to
present and test this new methodology. We first tried to reproduce the existing
reliability flags using supervised classification to describe different types
of redshift PDFs, but due to the subjective definition of these flags, soon
opted for a new homogeneous partitioning of the data into distinct clusters via
unsupervised classification. After assessing the accuracy of the new clusters
via resubstitution and test predictions, unlabelled data from preliminary mock
simulations for the Euclid space mission are projected into this mapping to
predict their redshift reliability labels.Comment: Submitted on 02 June 2017 (v1). Revised on 08 September 2017 (v2).
Latest version 28 September 2017 (this version v3
Decomposition of Spectra from Redshift Distortion Maps
We develop an optimized technique to extract density--density and
velocity--velocity spectra out of observed spectra in redshift space. The
measured spectra of the distribution of halos from redshift distorted mock map
are binned into 2--dimensional coordinates in Fourier space so as to be
decomposed into both spectra using angular projection dependence. With the
threshold limit introduced to minimize nonlinear suppression, the decomposed
velocity--velocity spectra are reasonably well measured up to scale k=0.07
h/Mpc, and the measured variances using our method are consistent with errors
predicted from a Fisher matrix analysis. The detectability is extendable to
k\sim 0.1 h/Mpc with more conservative bounds at the cost of weakened
constraint.Comment: 5 pages and 4 figures, submitted to MNRA
Comparing Galaxies and Lyman Alpha Absorbers at Low Redshift
A scenario is explored in which Lyman alpha absorbers at low redshift arise
from lines of sight through extended galaxy disks, including those of dwarf and
low surface brightness galaxies. A population of galaxies is simulated based
upon observed distributions of galaxy properties, and the gas disks are modeled
using pressure and gravity confinement. Some parameter values are ruled out by
comparing simulation results with the observed galaxy luminosity function, and
constraints may be made on the absorbing cross sections of galaxies. Simulation
results indicate that it is difficult to match absorbers with particular
galaxies observationally since absorption typically occurs at high impact
parameters (>200 kpc) from luminous galaxies. Low impact parameter absorption
is dominated by low luminosity dwarfs. A large fraction of absorption lines is
found to originate from low surface brightness galaxies, so that the absorbing
galaxy is likely to be misidentified. Low redshift Lyman alpha absorber counts
can easily be explained by moderately extended galaxy disks when low surface
brightness galaxies are included, and it is easily possible to find a scenario
which is consistent with observed the galaxy luminosity function, with low
redshift Lyman limit absorber counts, and with standard nucleosynthesis
predictions of the baryon density, Omega_Baryon.Comment: 17 pages, 8 figures, accepted to the Astrophysical Journa
Oscillations in the dark energy EoS: new MCMC lessons
We study the possibility of detecting oscillating patterns in the equation of
state (EoS) of the dark energy using different cosmological datasets. We follow
a phenomenological approach and study three different oscillating models for
the EoS, one of them periodic and the other two damped (proposed here for the
first time). All the models are characterised by the amplitude value, the
centre and the frequency of oscillations. In contrast to previous works in the
literature, we do not fix the value of the frequency to a fiducial value
related to the time extension of chosen datasets, but consider a discrete set
of values, so to avoid arbitrariness and try and detect any possible time
period in the EoS. We test the models using a recent collection of SNeIa,
direct Hubble data and Gamma Ray Bursts data. Main results are: I. even if
constraints on the amplitude are not too strong, we detect a trend of it versus
the frequency, i.e. decreasing (and even negatives) amplitudes for higher
frequencies; II. the centre of oscillation (which corresponds to the present
value of the EoS parameter) is very well constrained, phantom behaviour is
excluded at level and trend which is in agreement with the one for
the amplitude appears; III. the frequency is hard to constrain, showing similar
statistical validity for all the values of the discrete set chosen, but the
best fit of all the scenarios considered is associated with a period which is
in the redshift range depicted by our cosmological data. The "best" oscillating
models are compared with CDM using dimensionally consistent a Bayesian
approach based information criterion and the conclusion reached is the non
existence of significant evidence against dark energy oscillations.Comment: 12 papers, mn2e, 8 figure
Cosmic Shear Analysis with CFHTLS Deep data
We present the first cosmic shear measurements obtained from the T0001
release of the Canada-France-Hawaii Telescope Legacy Survey. The data set
covers three uncorrelated patches (D1, D3 and D4) of one square degree each
observed in u*, g', r', i' and z' bands, out to i'=25.5. The depth and the
multicolored observations done in deep fields enable several data quality
controls. The lensing signal is detected in both r' and i' bands and shows
similar amplitude and slope in both filters. B-modes are found to be
statistically zero at all scales. Using multi-color information, we derived a
photometric redshift for each galaxy and separate the sample into medium and
high-z galaxies. A stronger shear signal is detected from the high-z subsample
than from the low-z subsample, as expected from weak lensing tomography. While
further work is needed to model the effects of errors in the photometric
redshifts, this results suggests that it will be possible to obtain constraints
on the growth of dark matter fluctuations with lensing wide field surveys. The
various quality tests and analysis discussed in this work demonstrate that
MegaPrime/Megacam instrument produces excellent quality data. The combined Deep
and Wide surveys give sigma_8= 0.89 pm 0.06 assuming the Peacock & Dodds
non-linear scheme and sigma_8=0.86 pm 0.05 for the halo fitting model and
Omega_m=0.3. We assumed a Cold Dark Matter model with flat geometry.
Systematics, Hubble constant and redshift uncertainties have been marginalized
over. Using only data from the Deep survey, the 1 sigma upper bound for w_0,
the constant equation of state parameter is w_0 < -0.8.Comment: 14 pages, 16 figures, accepted A&
Modelling CO formation in the turbulent interstellar medium
We present results from high-resolution three-dimensional simulations of
turbulent interstellar gas that self-consistently follow its coupled thermal,
chemical and dynamical evolution, with a particular focus on the formation and
destruction of H2 and CO. We quantify the formation timescales for H2 and CO in
physical conditions corresponding to those found in nearby giant molecular
clouds, and show that both species form rapidly, with chemical timescales that
are comparable to the dynamical timescale of the gas.
We also investigate the spatial distributions of H2 and CO, and how they
relate to the underlying gas distribution. We show that H2 is a good tracer of
the gas distribution, but that the relationship between CO abundance and gas
density is more complex. The CO abundance is not well-correlated with either
the gas number density n or the visual extinction A_V: both have a large
influence on the CO abundance, but the inhomogeneous nature of the density
field produced by the turbulence means that n and A_V are only poorly
correlated. There is a large scatter in A_V, and hence CO abundance, for gas
with any particular density, and similarly a large scatter in density and CO
abundance for gas with any particular visual extinction. This will have
important consequences for the interpretation of the CO emission observed from
real molecular clouds.
Finally, we also examine the temperature structure of the simulated gas. We
show that the molecular gas is not isothermal. Most of it has a temperature in
the range of 10--20 K, but there is also a significant fraction of warmer gas,
located in low-extinction regions where photoelectric heating remains
effective.Comment: 37 pages, 15 figures; minor revisions, matches version accepted by
MNRA
Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy
The Supernova / Acceleration Probe (SNAP) is a proposed space-based
experiment designed to study the dark energy and alternative explanations of
the acceleration of the Universe's expansion by performing a series of
complementary systematics-controlled measurements. We describe a
self-consistent reference mission design for building a Type Ia supernova
Hubble diagram and for performing a wide-area weak gravitational lensing study.
A 2-m wide-field telescope feeds a focal plane consisting of a 0.7
square-degree imager tiled with equal areas of optical CCDs and near infrared
sensors, and a high-efficiency low-resolution integral field spectrograph. The
SNAP mission will obtain high-signal-to-noise calibrated light-curves and
spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A
wide-field survey covering one thousand square degrees resolves ~100 galaxies
per square arcminute. If we assume we live in a cosmological-constant-dominated
Universe, the matter density, dark energy density, and flatness of space can
all be measured with SNAP supernova and weak-lensing measurements to a
systematics-limited accuracy of 1%. For a flat universe, the
density-to-pressure ratio of dark energy can be similarly measured to 5% for
the present value w0 and ~0.1 for the time variation w'. The large survey area,
depth, spatial resolution, time-sampling, and nine-band optical to NIR
photometry will support additional independent and/or complementary dark-energy
measurement approaches as well as a broad range of auxiliary science programs.
(Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go
The bolometric focal plane array of the Polarbear CMB experiment
The Polarbear Cosmic Microwave Background (CMB) polarization experiment is
currently observing from the Atacama Desert in Northern Chile. It will
characterize the expected B-mode polarization due to gravitational lensing of
the CMB, and search for the possible B-mode signature of inflationary
gravitational waves. Its 250 mK focal plane detector array consists of 1,274
polarization-sensitive antenna-coupled bolometers, each with an associated
lithographed band-defining filter. Each detector's planar antenna structure is
coupled to the telescope's optical system through a contacting dielectric
lenslet, an architecture unique in current CMB experiments. We present the
initial characterization of this focal plane
Development and characterization of the readout system for POLARBEAR-2
POLARBEAR-2 is a next-generation receiver for precision measurements of the
polarization of the cosmic microwave background (Cosmic Microwave Background
(CMB)). Scheduled to deploy in early 2015, it will observe alongside the
existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro
Toco in the Atacama desert of Chile. For increased sensitivity, it will feature
a larger area focal plane, with a total of 7,588 polarization sensitive
antenna-coupled Transition Edge Sensor (TES) bolometers, with a design
sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin,
and the bolometers will be read-out with 40x frequency domain multiplexing,
with 36 optical bolometers on a single SQUID amplifier, along with 2 dark
bolometers and 2 calibration resistors. To increase the multiplexing factor
from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth
for SQUID readout and well-defined frequency channel spacing. Extending to
these higher frequencies requires new components and design for the LC filters
which define channel spacing. The LC filters are cold resonant circuits with an
inductor and capacitor in series with each bolometer, and stray inductance in
the wiring and equivalent series resistance from the capacitors can affect
bolometer operation. We present results from characterizing these new readout
components. Integration of the readout system is being done first on a small
scale, to ensure that the readout system does not affect bolometer sensitivity
or stability, and to validate the overall system before expansion into the full
receiver. We present the status of readout integration, and the initial results
and status of components for the full array.Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014:
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for
Astronomy VII. Published in Proceedings of SPIE Volume 915
- …
