2,436 research outputs found

    Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition

    Full text link
    This paper presents the MAXQ approach to hierarchical reinforcement learning based on decomposing the target Markov decision process (MDP) into a hierarchy of smaller MDPs and decomposing the value function of the target MDP into an additive combination of the value functions of the smaller MDPs. The paper defines the MAXQ hierarchy, proves formal results on its representational power, and establishes five conditions for the safe use of state abstractions. The paper presents an online model-free learning algorithm, MAXQ-Q, and proves that it converges wih probability 1 to a kind of locally-optimal policy known as a recursively optimal policy, even in the presence of the five kinds of state abstraction. The paper evaluates the MAXQ representation and MAXQ-Q through a series of experiments in three domains and shows experimentally that MAXQ-Q (with state abstractions) converges to a recursively optimal policy much faster than flat Q learning. The fact that MAXQ learns a representation of the value function has an important benefit: it makes it possible to compute and execute an improved, non-hierarchical policy via a procedure similar to the policy improvement step of policy iteration. The paper demonstrates the effectiveness of this non-hierarchical execution experimentally. Finally, the paper concludes with a comparison to related work and a discussion of the design tradeoffs in hierarchical reinforcement learning.Comment: 63 pages, 15 figure

    State Abstraction in MAXQ Hierarchical Reinforcement Learning

    Full text link
    Many researchers have explored methods for hierarchical reinforcement learning (RL) with temporal abstractions, in which abstract actions are defined that can perform many primitive actions before terminating. However, little is known about learning with state abstractions, in which aspects of the state space are ignored. In previous work, we developed the MAXQ method for hierarchical RL. In this paper, we define five conditions under which state abstraction can be combined with the MAXQ value function decomposition. We prove that the MAXQ-Q learning algorithm converges under these conditions and show experimentally that state abstraction is important for the successful application of MAXQ-Q learning.Comment: 7 pages, 2 figure

    Solving Multiclass Learning Problems via Error-Correcting Output Codes

    Full text link
    Multiclass learning problems involve finding a definition for an unknown function f(x) whose range is a discrete set containing k &gt 2 values (i.e., k ``classes''). The definition is acquired by studying collections of training examples of the form [x_i, f (x_i)]. Existing approaches to multiclass learning problems include direct application of multiclass algorithms such as the decision-tree algorithms C4.5 and CART, application of binary concept learning algorithms to learn individual binary functions for each of the k classes, and application of binary concept learning algorithms with distributed output representations. This paper compares these three approaches to a new technique in which error-correcting codes are employed as a distributed output representation. We show that these output representations improve the generalization performance of both C4.5 and backpropagation on a wide range of multiclass learning tasks. We also demonstrate that this approach is robust with respect to changes in the size of the training sample, the assignment of distributed representations to particular classes, and the application of overfitting avoidance techniques such as decision-tree pruning. Finally, we show that---like the other methods---the error-correcting code technique can provide reliable class probability estimates. Taken together, these results demonstrate that error-correcting output codes provide a general-purpose method for improving the performance of inductive learning programs on multiclass problems.Comment: See http://www.jair.org/ for any accompanying file

    Integrating Learning from Examples into the Search for Diagnostic Policies

    Full text link
    This paper studies the problem of learning diagnostic policies from training examples. A diagnostic policy is a complete description of the decision-making actions of a diagnostician (i.e., tests followed by a diagnostic decision) for all possible combinations of test results. An optimal diagnostic policy is one that minimizes the expected total cost, which is the sum of measurement costs and misdiagnosis costs. In most diagnostic settings, there is a tradeoff between these two kinds of costs. This paper formalizes diagnostic decision making as a Markov Decision Process (MDP). The paper introduces a new family of systematic search algorithms based on the AO* algorithm to solve this MDP. To make AO* efficient, the paper describes an admissible heuristic that enables AO* to prune large parts of the search space. The paper also introduces several greedy algorithms including some improvements over previously-published methods. The paper then addresses the question of learning diagnostic policies from examples. When the probabilities of diseases and test results are computed from training data, there is a great danger of overfitting. To reduce overfitting, regularizers are integrated into the search algorithms. Finally, the paper compares the proposed methods on five benchmark diagnostic data sets. The studies show that in most cases the systematic search methods produce better diagnostic policies than the greedy methods. In addition, the studies show that for training sets of realistic size, the systematic search algorithms are practical on todays desktop computers

    The use of provenance in information retrieval

    Get PDF
    The volume of electronic information that users accumulate is steadily rising. A recent study [2] found that there were on average 32,000 pieces of information (e-mails, web pages, documents, etc.) for each user. The problem of organizin

    Gaussian Approximation of Collective Graphical Models

    Full text link
    The Collective Graphical Model (CGM) models a population of independent and identically distributed individuals when only collective statistics (i.e., counts of individuals) are observed. Exact inference in CGMs is intractable, and previous work has explored Markov Chain Monte Carlo (MCMC) and MAP approximations for learning and inference. This paper studies Gaussian approximations to the CGM. As the population grows large, we show that the CGM distribution converges to a multivariate Gaussian distribution (GCGM) that maintains the conditional independence properties of the original CGM. If the observations are exact marginals of the CGM or marginals that are corrupted by Gaussian noise, inference in the GCGM approximation can be computed efficiently in closed form. If the observations follow a different noise model (e.g., Poisson), then expectation propagation provides efficient and accurate approximate inference. The accuracy and speed of GCGM inference is compared to the MCMC and MAP methods on a simulated bird migration problem. The GCGM matches or exceeds the accuracy of the MAP method while being significantly faster.Comment: Accepted by ICML 2014. 10 page version with appendi

    Learning from Noisy Label Distributions

    Full text link
    In this paper, we consider a novel machine learning problem, that is, learning a classifier from noisy label distributions. In this problem, each instance with a feature vector belongs to at least one group. Then, instead of the true label of each instance, we observe the label distribution of the instances associated with a group, where the label distribution is distorted by an unknown noise. Our goals are to (1) estimate the true label of each instance, and (2) learn a classifier that predicts the true label of a new instance. We propose a probabilistic model that considers true label distributions of groups and parameters that represent the noise as hidden variables. The model can be learned based on a variational Bayesian method. In numerical experiments, we show that the proposed model outperforms existing methods in terms of the estimation of the true labels of instances.Comment: Accepted in ICANN201
    • …
    corecore