33 research outputs found

    Tapered microfiber MZI Biosensor for highly sensitive detection of Staphylococcus aureus

    Get PDF
    A new double-taper microfiber Mach-Zehnder interferometer (MZI) biosensor is applied for Staphylococcus aureus (S. aureus) detection. The microfiber MZI structure is fabricated by creating two tapers along a traditional single mode fiber (SMF) firstly and tapering the SMF sandwiched between two tapers into very small diameter (in the order of micrometers). The measured refractive index (RI) sensitivity of the microfiber MZI is up to 2731.1 nm/RIU in the RI range of 1.34 when the taper waist diameter was 10.2 μm, which is in good agreement with numerical simulation results by using the beam propagation method (BPM). The microfiber MZI functionalized with pig immunoglobulin (pig IgG) could be used to specifically binding to S. aureus. In experiment, the maximum wavelength shift of 1.408 nm was achieved when the microfiber biosensors were immersed into S. aureus with concentration of 7×101 CFU/mL. The limit of detection (LoD) of the microfiber biosensor for S. aureus is calculated as low as 11 CFU/mL. The proposed microfiber MZI biosensor has advantages of simple structure configuration, high sensitivity, good repeatability and specificity, wide detection range and fast detection response time (<30 minutes) and thus was demonstrated a good application prospect in food safety inspection, biochemical sensing, diseases and medical diagnostics

    Ultrahigh-sensitivity label-free singlemode- tapered no core-singlemode fiber immunosensor for Listeria monocytogenes detection

    Get PDF
    A challenge for optical fiber biosensor is to achieve ultrahigh sensitivity with narrow full width at half maximum (FWHM) of the spectrum. To address this challenge, an ultrahigh-sensitivity microfiber interferometer fiber ring laser (FRL) biosensor is proposed and investigated for Listeria monocytogenes (L. monocytogenes) detection. The fiber biosensor is composed of a singlemode- tapered no core-singlemode (STNS) fiber configuration, which is functionalized with the anti-L. monocytogenes antibodies. An Erbium Doped Fiber Amplifier is applied to the sensor to excite laser and thus reduce the FWHM of the spectrum, which significantly improved the limit of detection (LoD). The proposed STNS FRL biosensor has excellent reproducibility, specificity and sensitivity for L. monocytogenes. The developed STNS FRL biosensor can directly detect L. monocytogenes cells with LoD as low as 1.0 cell/mL, indicating the capability for detecting single cell of L. monocytogenes. Real lettuce and milk samples have been tested and test result in lettuce and milk samples has deviations within ±30% from that of Phosphate-buffered saline (PBS) for L. monocytogenes concentrations vary from 101 to 103 cells/mL(g). The developed STNS FRL biosensor has ultrahigh sensitivity, good stability, reproducibility, and specificity, which has potential applications in diseases/medical diagnostics

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Sex differences in oncogenic mutational processes

    Get PDF
    Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Sex differences have been observed in multiple facets of cancer epidemiology, treatment and biology, and in most cancers outside the sex organs. Efforts to link these clinical differences to specific molecular features have focused on somatic mutations within the coding regions of the genome. Here we report a pan-cancer analysis of sex differences in whole genomes of 1983 tumours of 28 subtypes as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. We both confirm the results of exome studies, and also uncover previously undescribed sex differences. These include sex-biases in coding and non-coding cancer drivers, mutation prevalence and strikingly, in mutational signatures related to underlying mutational processes. These results underline the pervasiveness of molecular sex differences and strengthen the call for increased consideration of sex in molecular cancer research.Peer reviewe

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    Get PDF
    The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts.The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that -80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAFPeer reviewe
    corecore