32 research outputs found

    Neonatal innate immunity and Toll-like receptor

    Get PDF
    The innate immune response is the first line of defense against microbial infections. Innate immunity is made up of the surface barrier, cellular immunity and humoral immunity. In newborn, immunologic function and demands are different to adults. Neonatal innate immunity specifically suppresses Th1-type immune responses, and not Th2-type immune responses, which are enhanced. And the impaired response of macrophages is associated with the defective innate immunity in newborn period. Toll-like receptors (TLRs) play a key roles in the detection of invading pathogens and in the induction of innate immune responses. In newborn, the expression of TLRs is age dependent, so preterm has low expression of TLRs. Also, there are defects in signaling pathways downstream of TLRs. As a consequence, the defects of TLRs activity cause the susceptibility to infection in the neonatal period

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Laparoschisis (prise en charge périnatale et suivi depuis 1990. A propos de 49 cas)

    No full text
    STRASBOURG-Medecine (674822101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    A Sewing Needle Within the Right Hepatic Lobe of an Infant

    No full text

    Foreign body in the liver: Case report and review of literature

    No full text

    Expression of TLR-2, TLR-4, NOD2 and pNF-kappaB in a neonatal rat model of necrotizing enterocolitis.

    Get PDF
    BACKGROUND: The etiology of necrotizing enterocolitis (NEC) results from a combination of several risk factors that act synergistically and occurs in the same circumstances as those which lead to innate immunity activation. Pattern recognition molecules could be an important player in the initiation of an exaggerated inflammatory response leading to intestinal injury in NEC. METHODOLOGY/PRINCIPAL FINDINGS: We specifically evaluated intestinal epithelial cell (IEC) expression of Toll-like receptor 2 (TLR-2), TLR-4, NOD2 and phosphorylated NF-kappaB (pNF-kappaB) after mucosal injury in a rat model of NEC induced by prematurity, systemic hypoxia, and a rich protein formula. In the control group (group 1), neonatal rats were full-term and breast-fed; in the experimental groups, rat pups were preterm at day 21 of gestation and rat-milk fed (group 2) or hand-gavaged with a protein rich formula after a hypoxia-reoxygenation procedure (group 3). Morphological mucosal changes in the small bowel were scored on hematoxylin- and eosin-stained sections. Immunohistochemistry was performed on frozen tissue sections using anti TLR-2 and active pNF-kappaB p65 antibodies. Real-time RT-PCR was performed to assess mRNA expression of NOD2, TLR-2 and TLR-4. Proliferation and apoptosis were studied in paraffin sections using anti Ki-67 and caspase-3 antibodies, respectively. The combination of immaturity, protein rich formula and a hypoxia-reoxygenation procedure induces pathological mucosal damage consistent with NEC. There was an overexpression of TLR-2, and pNF-kappaB in IECs that was correlated with the severity of mucosal damage, together with an increase of apoptotic IECs and markedly impaired proliferation. In addition, these immunological alterations appeared before severe mucosal damage. TLR-2 mRNA were also increased in NEC together with TLR-4 mRNA using real-time RT-PCR whereas NOD2 expression was unchanged. CONCLUSIONS/SIGNIFICANCE: These results show that this rat model of NEC induced mucosal injury, leading to a highly responsive IEC phenotype and suggesting that alterations in the innate immune system participates in the pathogenesis of NEC and are enhanced by prematurity

    Scales used for the semiquantitation of the small bowel mucosal epithelial cells positive for immunohistochemical staining with an anti caspase-3 antibody.

    No full text
    <p>(0): with 0 to 2 cells; (1): with 2 to 5 cells; (2): with 5 to 20 cells; (3): with 20 to 50 cells; (4): more than 50 cells. Representative images are shown (original magnification 400×).</p
    corecore