17 research outputs found

    The complex effects of the invasive polychaetes Marenzelleria spp. on benthic nutrient dynamics

    Get PDF
    The effects of the polychaetes Marenzelleria sp. (Polychaeta, Spionidae), nonindigenous, rapidly increasing species in the Baltic Sea, on benthic nutrient fluxes, denitrification and sediment pore water nutrient concentration were studied in laboratory experiments using a flow-through setup with muddy sediment from coastal regions of the Gulf of Finland. In addition, different forms of sediment phosphorus (P), separated by chemical fractionation, were studied in three sediment layers. At a population density corresponding to about half the highest measured in the northern Baltic Sea, Marenzelleria sp. increased the fluxes of P and ammonium to the water column. No effect could be recorded for denitrification. Since the previously dominant species of the area, Monoporeia affinis, can enhance denitrification and lower the amount of dissolved P in the pore water, the replacement of M affinis with Marenzelleria spp. may lead to increased P flux to the water column and decreased denitrification, further increasing the ammonium flux to the water column. However, sediment reworking by Marenzelleria spp. also oxidizes the surface sediment in the long run, improving its ability to retain P and support nitrification. Therefore, the impact of Marenzelleria spp. on sediment nutrient release may not be as drastic as the initial reactions seen in our experiments suggest. (c) 2007 Elsevier B.V. All rights reserved.The effects of the polychaetes Marenzelleria sp. (Polychaeta, Spionidae), nonindigenous, rapidly increasing species in the Baltic Sea, on benthic nutrient fluxes, denitrification and sediment pore water nutrient concentration were studied in laboratory experiments using a flow-through setup with muddy sediment from coastal regions of the Gulf of Finland. In addition, different forms of sediment phosphorus (P), separated by chemical fractionation, were studied in three sediment layers. At a population density corresponding to about half the highest measured in the northern Baltic Sea, Marenzelleria sp. increased the fluxes of P and ammonium to the water column. No effect could be recorded for denitrification. Since the previously dominant species of the area, Monoporeia affinis, can enhance denitrification and lower the amount of dissolved P in the pore water, the replacement of M affinis with Marenzelleria spp. may lead to increased P flux to the water column and decreased denitrification, further increasing the ammonium flux to the water column. However, sediment reworking by Marenzelleria spp. also oxidizes the surface sediment in the long run, improving its ability to retain P and support nitrification. Therefore, the impact of Marenzelleria spp. on sediment nutrient release may not be as drastic as the initial reactions seen in our experiments suggest. (c) 2007 Elsevier B.V. All rights reserved.The effects of the polychaetes Marenzelleria sp. (Polychaeta, Spionidae), nonindigenous, rapidly increasing species in the Baltic Sea, on benthic nutrient fluxes, denitrification and sediment pore water nutrient concentration were studied in laboratory experiments using a flow-through setup with muddy sediment from coastal regions of the Gulf of Finland. In addition, different forms of sediment phosphorus (P), separated by chemical fractionation, were studied in three sediment layers. At a population density corresponding to about half the highest measured in the northern Baltic Sea, Marenzelleria sp. increased the fluxes of P and ammonium to the water column. No effect could be recorded for denitrification. Since the previously dominant species of the area, Monoporeia affinis, can enhance denitrification and lower the amount of dissolved P in the pore water, the replacement of M affinis with Marenzelleria spp. may lead to increased P flux to the water column and decreased denitrification, further increasing the ammonium flux to the water column. However, sediment reworking by Marenzelleria spp. also oxidizes the surface sediment in the long run, improving its ability to retain P and support nitrification. Therefore, the impact of Marenzelleria spp. on sediment nutrient release may not be as drastic as the initial reactions seen in our experiments suggest. (c) 2007 Elsevier B.V. All rights reserved.Peer reviewe

    FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1

    Get PDF
    We review the physics opportunities of the Future Circular Collider, covering its e+e-, pp, ep and heavy ion programmes. We describe the measurement capabilities of each FCC component, addressing the study of electroweak, Higgs and strong interactions, the top quark and flavour, as well as phenomena beyond the Standard Model. We highlight the synergy and complementarity of the different colliders, which will contribute to a uniquely coherent and ambitious research programme, providing an unmatchable combination of precision and sensitivity to new physics

    FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics

    HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    HE-LHC: The High-Energy Large Hadron Collider

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    Preoperative esophageal stenting and 5-year survival in patients undergoing esophagectomy for esophageal cancer:a population-based nationwide study from Finland

    No full text
    Abstract Background: Preoperative esophageal stenting is proposed to have a negative effect on outcomes. The aim was to compare a 5-year survival in patients undergoing esophagectomy for esophageal cancer with and without preoperative esophageal stent in a population-based nationwide cohort from Finland. The secondary outcome was 90-day mortality. Methods: This study included curatively intended esophagectomies for esophageal cancer in Finland between 1999 and 2016, with follow-up until December 31, 2019. Cox proportional hazards models provided hazard ratios (HRs) with 95% confidence intervals (CIs) of overall 5-year and 90-day mortality. Model 1 was adjusted for age, sex, year of the surgery, comorbidities, histology, pathological stage, and neoadjuvant therapy. Model 2 included also albumin level and BMI. Result: Of 1064 patients, a total of 134 patients underwent preoperative stenting and 930 did not. In both adjusted models 1 and 2, higher 5-year mortality was seen in patients with preoperative stent with HRs of 1.29 (95% CI 1.00–1.65) and 1.25 (95% CI 0.97–1.62), respectively, compared to no stenting. The adjusted HR of 90-day mortality was 2.49 (95% CI 1.27–4.87) in model 1 and 2.49 (95% CI 1.25–4.99) in model 2. When including only neoadjuvant-treated patients, those with preoperative stent had a 5-year survival of 39.2% compared to 46.4% without stent (adjusted HR 1.34, 95% CI 1.00–1.80), and a 90-day mortality rate of 8.5% and 2.5% (adjusted HR 3.99, 95% CI 1.51–10.50). Discussion: This nationwide study reports worse 5-year and 90-day outcomes in patients with preoperative esophageal stent. Since residual confounding remains possible, observed difference could be only an association rather than the cause
    corecore