572 research outputs found

    Kullback-Leibler and Renormalized Entropy: Applications to EEGs of Epilepsy Patients

    Full text link
    Recently, renormalized entropy was proposed as a novel measure of relative entropy (P. Saparin et al., Chaos, Solitons & Fractals 4, 1907 (1994)) and applied to several physiological time sequences, including EEGs of patients with epilepsy. We show here that this measure is just a modified Kullback-Leibler (K-L) relative entropy, and it gives similar numerical results to the standard K-L entropy. The latter better distinguishes frequency contents of e.g. seizure and background EEGs than renormalized entropy. We thus propose that renormalized entropy might not be as useful as claimed by its proponents. In passing we also make some critical remarks about the implementation of these methods.Comment: 15 pages, 4 Postscript figures. Submitted to Phys. Rev. E, 199

    Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications.

    Get PDF
    BACKGROUND: Ectasia development occurs due to a chronic corneal biomechanical decompensation or weakness, resulting in stromal thinning and corneal protrusion. This leads to corneal steepening, increase in astigmatism, and irregularity. In corneal refractive surgery, the detection of mild forms of ectasia pre-operatively is essential to avoid post-operative progressive ectasia, which also depends on the impact of the procedure on the cornea. METHOD: The advent of 3D tomography is proven as a significant advancement to further characterize corneal shape beyond front surface topography, which is still relevant. While screening tests for ectasia had been limited to corneal shape (geometry) assessment, clinical biomechanical assessment has been possible since the introduction of the Ocular Response Analyzer (Reichert Ophthalmic Instruments, Buffalo, USA) in 2005 and the Corvis ST (Oculus Optikgerate GmbH, Wetzlar, Germany) in 2010. Direct clinical biomechanical evaluation is recognized as paramount, especially in detection of mild ectatic cases and characterization of the susceptibility for ectasia progression for any cornea. CONCLUSIONS: The purpose of this review is to describe the current state of clinical evaluation of corneal biomechanics, focusing on the most recent advances of commercially available instruments and also on future developments, such as Brillouin microscopy.(undefined)info:eu-repo/semantics/publishedVersio

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→μ+μ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→μ+μ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physiquedes Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Observation of the baryonic decay B \uaf 0 \u2192 \u39bc+ p \uaf K-K+

    Get PDF
    We report the observation of the baryonic decay B\uaf0\u2192\u39bc+p\uafK-K+ using a data sample of 471 7106 BB\uaf pairs produced in e+e- annihilations at s=10.58GeV. This data sample was recorded with the BABAR detector at the PEP-II storage ring at SLAC. We find B(B\uaf0\u2192\u39bc+p\uafK-K+)=(2.5\ub10.4(stat)\ub10.2(syst)\ub10.6B(\u39bc+)) 710-5, where the uncertainties are statistical, systematic, and due to the uncertainty of the \u39bc+\u2192pK-\u3c0+ branching fraction, respectively. The result has a significance corresponding to 5.0 standard deviations, including all uncertainties. For the resonant decay B\uaf0\u2192\u39bc+p\uaf\u3c6, we determine the upper limit B(B\uaf0\u2192\u39bc+p\uaf\u3c6)<1.2 710-5 at 90% confidence level
    corecore